
Introduction

Chapter 1

Programming languages - ubiquitous

2

Computer evolution

§ENIAC
§ 18,000 sq feet
§ 25 tones = 25,000 Kg
§ 5,000 instr/s

§ iPhone 6
§ 4.55 ounces = 0.13 Kg
§ 25,000,000,000 instr/s

§ 200,000 x smaller, 5,000,000 x faster
= 1,000,000,000,000 x more efficient

3

Computer evolution - Quotes

§ “I think there is a world market for maybe five
computers.”

(Thomas Watson, president of IBM, 1943)

§ “Where a calculator like the ENIAC today is equipped
with 18,000 vacuum tubes and weighs 30 tons, computers
in the future may have only 1,000 vacuum tubes and
perhaps weigh only 1½ tons.”

(Andrew Hamilton, “Brains that Click”, 1949)

§ “The cost for 128 kilobytes of memory will fall below
U$100 in the near future.”

(Creative Computing magazine, December 1981)

4

Introduction

Why are there so
many languages?

§ Evolution
§ Special purposes
§ Personal preference
§ Features
§ Availability

§ Standardization
§ Open source

§ Good compilers
§ Socio-economic

factors

st
ru

ct
ur

ed
 p

ro
gr

am
m

in
g

ob
je

ct
-o

rie
nt

ed
 p

ro
gr

am
m

in
g

sc
rip

te
d

pr
og

ra
m

m
in

g

5

Introduction

What are programming languages for?

§ way of thinking - expressing algorithms
§ abstraction of virtual machine - way of specifying what you

want the hardware to do without getting down into the bits
§ implementor’s point of view vs. programmer’s point of view

“Programming is the art of telling another human being
what one wants the computer to do.”

Donald Knuth
§ conceptual clarity
§ implementation efficiency

6

Introduction

What makes a language successful?

§ easy to learn:
§ BASIC, Pascal, LOGO, Scheme

§ easy to express things, easy to use once fluent, powerful:
§ C, Common Lisp, APL, Algol-68, Perl, Scheme

§ easy to implement
§ BASIC, Forth

§ possible to compile to very good (fast/small) code
§ Fortran, C

§ backing of a powerful sponsor
§ COBOL, PL/1, Ada, Visual Basic

§ wide dissemination at minimal cost
§ Pascal, Turing, Java

7

Programming languages spectrum

§ imperative – how the computer should do it?
§ von Neumann - C, Fortran, Pascal, Basic
§ object-oriented - C++, Smalltalk, Java
§ scripting languages - Python, Perl, JavaScript, PHP

§declarative – what the computer is to do?
§ functional - Scheme, ML, Lisp, FP
§ logic - Prolog, VisiCalc, RPG

§ imperative languages predominate
§ better performance

§declarative languages are higher level
§ farther from implementation details
§ safer; imperative languages started importing their features

8

Evolution

§Machine language
55 89 e5 53 83 ec 04 83 e4 f0 e8 31 00 00 00 89 c3 e8 2a 00
00 00 39 c3 74 10 8d b6 00 00 00 00 39 c3 7e 13 29 c3 39 c3
75 f6 89 1c 24 e8 6e 00 00 00 8b 5d fc c9 c3 29 d8 eb eb 90

§Assembly
pushl %ebp jle D
movl %esp, %ebp subl %eax, %ebx
pushl %ebx B: cmpl %eax, %ebx
subl $4, %esp jne A
andl $−16, %esp C: movl %ebx, (%esp)
call getint call putint
movl %eax, %ebx movl −4(%ebp), %ebx
call getint leave
cmpl %eax, %ebx ret
je C D: subl %ebx, %eax

A: cmpl %eax, %ebx jmp B

§ Fortran
FUNCTION GCD(A, B)

IA = A
IB = B

1 IF (IB.NE.0) THEN
ITEMP = IA
IA = IB
IB = MOD(ITEMP, IB)
GOTO 1

END IF
GCD = IA
RETURN

END

9

Evolution

§C++
int gcd(int a, int b) {

while (a != b) {
if (a > b) a = a - b;
else b = b - a;

}
return a;

}

int gcd2(int a, int b) {
return (b==0) ? a : gcd2(b, a%b);

}

§Python
def gcd(x, y):

while (y):
x, y = y, x % y

return x

def gcd2(a,b):
return a if (b==0) else gcd2(b, a%b)

10

Evolution

§ Scheme
(define gcd
(lambda (a b)
(cond ((zero? b) a)

(else (gcd b (modulo a b))))))

§Prolog
gcd(X,Y,G) :- X=Y, G=X.
gcd(X,Y,G) :- X<Y, Y1 is Y-X, gcd(X,Y1,G).
gcd(X,Y,G) :- X>Y, gcd(Y,X,G).

11

Why study programming languages?
§ Help you choose a language:

§ systems programming: C, C++, C#
§ numerical computations: Fortran, C, Matlab
§ web-based applications: PHP, Javascript, Ruby
§ embedded systems: Ada, C
§ symbolic data manipulation: Scheme, ML, Common Lisp
§ networked PC programs: Java, .NET
§ logical relationships: Prolog

§ Make it easier to learn new languages:
§ many concepts are common to many languages: syntax, semantics,

iteration, recursion, abstraction, etc.

§ Make better use of the language you are using:
§ understand various features
§ understand implementation cost
§ find ways to do things that are not explicitly supported

12

Top Languages

13

The Power of Abstraction

§Abstraction - ability to control complexity
§ high-level programming
§ names
§ functions / procedures / methods
§ objects
§ functional programming

§ “Mathematics is the queen of the sciences.”
Carl Friedrich Gauss

§ “Mathematics is the language with which God has written
the universe.”

Galileo Galilei
14

Compilation vs. Interpretation

§Compilation
§ The compiler translates the high-level source program

into an equivalent target program (typically in machine
language), and then goes away:

15

Compilation vs. Interpretation

§ Interpretation
§ Interpreter stays around for the execution of the program
§ Interpreter is the locus of control during execution

16

Compilation vs. Interpretation

§Compilation
§ Better performance

§ Early decisions can save time (early vs. late binding)
§ Example: a variable’s address can be fixed at compile time

§ Interpretation:
§ Greater flexibility

§ Example: Lisp, Prolog programs can write new pieces and
execute them on the fly

§ Better diagnostics - error messages
§ Source-level debugger

17

Compilation vs. Interpretation

§Compilation, then interpretation
§ Distinction not very clear; compiled if:

§ Translator analyzes the program thoroughly
§ Intermediate program very different from source

§ Python – interpreted: dynamic semantic error checking
§ C, Fortran – compiled: static semantic error checking

18

Compilation vs. Interpretation

§Compilation
§ Compilation is translation from one language into

another, with full analysis of the meaning of the input
§ Compilation entails semantic understanding of what is

being processed; pre-processing does not
§ A pre-processor will often let errors through. A compiler

hides further steps; a pre-processor does not

19

Implementation strategies

§Preprocessor
§ Used by many interpreted languages
§ Removes comments and white space
§ Groups characters into tokens (keywords, identifiers,

numbers, symbols)
§ Expands abbreviations in the style of a macro assembler
§ Identifies higher-level syntactic structures (loops,

subroutines)

20

Implementation strategies

§Library of Routines and Linking
§ Compiler uses a linker program to merge the appropriate library

of subroutines (e.g., math functions such as sin, cos, log, etc.)
into the final program:

21

Implementation strategies

§The C Preprocessor (conditional compilation)
§ Preprocessor deletes comments and expands macros
§ Preprocessor deletes portions of code, which allows

several versions of a program be built from same source
§ Example: #ifdef directive

22

Implementation strategies

§Compilation of Interpreted Languages
§ Interpreted/compiled is a property of the implementation,

not of the language
§ Python, Lisp, Prolog, Smalltalk
§ The compiler generates code that makes assumptions

about decisions that won’t be finalized until runtime.
§ If these assumptions are valid, the code runs very fast.
§ If not, a dynamic check will revert to the interpreter.

23

Implementation strategies

§Just-in-Time Compilation
§ Delay compilation until the last possible moment

§ Java: machine-independent intermediate form – bytecode
§ bytecode is the standard format for distribution of Java programs

§ C# compiler produces Common Intermediate Language (CIL)

24

Implementation strategies

§Unconventional compilers
§ text formatters may compile high-level document

description into commands for a printer
§ ,

§ query language processors translate into primitive
operations on files
§ SQL

25

Programming Environment Tools

§Tools
§ Assemblers, debuggers, preprocessors, linkers
§ Editors – can have cross referencing
§ Version management – keep track of separately compiled

modules
§ Profilers – performance analysis
§ IDEs – help with everything

§ knowledge of syntax
§ maintain partially compiled internal representation
§ Eclipse, NetBeans, Visual Studio, XCode

26

An Overview of Compilation

§Phases of Compilation

27

An Overview of Interpretation

§Phases of Interpretation

28

An Overview of Compilation

§Scanning (Lexical Analysis)
§ divide program into "tokens"

§ smallest meaningful units
§ this saves time, since character-by-character processing is slow

§ scanning is recognition of a regular language
§ via a DFA (Deterministic Finite Automaton)

29

An Overview of Compilation

§Scanning: Example
§ C Program (computes GCD):

int main() {
int i = getint(), j = getint();
while (i != j) {

if (i > j) i = i - j;
else j = j - i;

}
putint(i);

}

§ Input – sequence of characters:
§ ‘i’, ‘n’, ‘t’, ‘ ’, ‘m’, ‘a’, ‘i’, ‘n’, ‘(’, ‘)’, …

§ Output – tokens:
§ int, main, (,), {, int, i, =, getint, (,), j, =,
getint, (,), ;, while, (, i, !=, j,), {, if, (, i,
>, j,), i, =, i, -, j, ;, else, j, =, j, -, i, ;, },
putint, (, i,), ;, }

30

An Overview of Compilation

§Parsing (Syntax Analysis)
§ discovers the structure of the program
§ parsing is recognition of a context-free language

§ via a Push-Down Automaton (PDA)
§ organize tokens into a parse tree

§ higher-level constructs in terms of their constituents
§ as defined by a context-free grammar

31

An Overview of Compilation

§Parsing: Example – while loop in C
§ Context-free grammar (part of):

iteration-statement → while (expression) statement

statement → { block-item-list-opt }

block-item-list-opt → block-item-list | ϵ

block-item-list → block-item
block-item-list → block-item-list block-item

block-item → declaration
block-item → statement

§ Parse tree for GCD program
§ based on full context-free grammar
§ see next slides

32

33

int main() {
int i = getint(),
j = getint();
while (i != j) {

if (i > j) i = i - j;
else j = j - i;

}
putint(i);

}

§Context-Free Grammar and Parsing
(continued)

34

int main() {
int i = getint(),
j = getint();
while (i != j) {

if (i > j) i = i - j;
else j = j - i;

}
putint(i);

}

An Overview of Compilation

§Semantic Analysis
§ the discovery of meaning in the program
§ detects multiple occurrences of the same identifier
§ tracks the types of identifiers and expressions
§ verify consistent usage and guide code generation
§ builds and maintains a symbol table:

§ maps each identifier to its information: type, scope, structure, etc.
§ used to check many things
§ Examples in C:

§ identifiers declared before used
§ identifiers used in the appropriate context
§ correct number and type of arguments for subroutines
§ return correct type
§ switch arms have distinct constant labels

35

An Overview of Compilation

§Semantic Analysis
§ compiler does static semantic analysis
§ dynamic semantics - for what must be checked at run time
§ Dynamic checks - trade off: safety vs. speed

§ C has very few dynamic checks
§ Examples in other languages:

§ array indexes within bounds
§ variables initialized before used
§ pointers are dereferenced only when referring to valid object
§ arithmetic operations do not overflow

§ Run time checks fail – abort or throw exception

36

An Overview of Compilation

§Syntax Tree
§ Parse tree = concrete syntax tree

§ it shows how the tokens are derived from CFG
§ after that, much information in the parse tree is not relevant

§ Semantic analyzer: parse tree changed into syntax tree
§ syntax tree = abstract syntax tree
§ removes the “useless” internal nodes
§ annotates the remaining nodes with attributes

37

An Overview of Compilation

§ Syntax Tree for GCD program

38

int main() {
int i = getint(),
j = getint();
while (i != j) {

if (i > j) i = i - j;
else j = j - i;

}
putint(i);

}

An Overview of Compilation

§Code generation
§ Interpreters use annotated syntax tree to run the program

§ execution means tree traversal
§ Compilers pass the annotated syntax tree as intermediate

form to the back end

§Target code generation
§ produces assembly language
§ Example for GCD program – next slide

§ naïve code
§ good code is difficult to produce
§ That’s why you’ll always find good jobs!

39

An Overview of Compilation

40

int main() {
int i = getint(),
j = getint();
while (i != j) {

if (i > j) i = i - j;
else j = j - i;

}
putint(i);

}

An Overview of Compilation

§Optimization (code improvement)
§ takes an intermediate-code program and produces another

one that does the same thing faster, or in less space
§ The code on the previous slide becomes:

pushl %ebp jle D
movl %esp, %ebp subl %eax, %ebx
pushl %ebx B: cmpl %eax, %ebx
subl $4, %esp jne A
andl $−16, %esp C: movl %ebx, (%esp)
call getint call putint
movl %eax, %ebx movl −4(%ebp), %ebx
call getint leave
cmpl %eax, %ebx ret
je C D: subl %ebx, %eax

A: cmpl %eax, %ebx jmp B

41

Programming
Language Syntax

- Scanning -
Chapter 2, Sections 2.1-2.2

Regular Expressions

§ Token: a shortest string of characters with meaning
§ Tokens – specified by regular expressions
§ An alphabet S is any finite nonempty set

§ Examples:
§ English: {a, b, …, z},
§ binary: {0, 1}
§ {a, b, …, z, 0, 1, …, 9, ⋅, |, *, e}

§ The set of all finite strings over S is denoted S*

§ The empty string: e ∈ S* (has zero characters)

2

Regular Expressions

§Regular expressions
§ Regular expressions over an alphabet S are all strings

obtained as follows:
§ e is a regular expression
§ any character a ∈ S is a regular expression
§ For reg. exp. a, b, the following are reg. exp.:

§ a⋅b - concatenation (‘⋅’ omitted: ab)
§ a | b - union (‘|’ = or) (sometimes denoted a + b)
§ a* - Kleene star (0 or more repetitions)

§ a+ = a a* (1 or more repetitions)

3

Regular Expressions

§ Example: Signed integers:
sign_int → (+ | - | e)(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)*

§ Example: Numerical constants:
number → integer | real

integer → digit digit*

real → integer exponent | decimal (exponent | e)
decimal → digit* (. digit | digit .) digit*

exponent → (e | E) (+ | - | e) integer
digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

§ ‘→’ means “can be”
§ Precedence order: ‘*’ > ‘⋅’ > ‘|’

4

Regular Expressions

§ Other applications:
§ grep family of tools in Unix
§ many editors
§ scripting languages:

§ Perl
§ Python
§ Ruby
§ awk
§ sed

5

Formatting issues

§ Upper vs. lower case
§ distinct in some languages: C, Python, Perl
§ same in others: Fortran, Lisp, Ada

§ Identifiers: letters, digits, underscore (most languages)
§ camel case: someIdentifierName
§ underscore: some_identifier_name

§ Unicode
§ non-Latin characters have become important

§ White spaces
§ usually ignored
§ separate statements: Python, Haskell, Go, Swift
§ indentation important: Python, Haskell

6

Context-Free Grammars

Context Free Grammar (CFG)
§ CFG consists of:

§ A set of terminals, T
§ A set of non-terminals, N
§ A start symbol, S ∈ N
§ A set of productions; subset of N ´ (N ∪ T)*

§ Example: Balanced parentheses:

S ® e
S ® SS
S ® (S)

7

Context-Free Grammars
§ Example: CFG for arithmetic expressions:

expr → id | number | - expr | (expr) | expr op expr
op → + | - | * | / |

§ Derivation: start with S, continue with productions
§ replace LHS nonterminal by the RHS

§ Example: generate the string: slope * x + intercept
expr ⟹ expr op expr (S = expr)

⟹ expr op id (‘⟹’ = “derives”)
⟹ expr + id (‘⟹*’ = 0 or more steps)
⟹ expr op expr + id
⟹ expr op id + id
⟹ expr * id + id
⟹ id * id + id

(slope) (x) (intercept)

§ Sentential form: any string along the way
8

Context-Free Grammars
§ Right-most derivation: the rightmost nonterminal is replaced

expr ⟹ expr op expr
⟹ expr op id
⟹ expr + id
⟹ expr op expr + id
⟹ expr op id + id
⟹ expr * id + id
⟹ id * id + id

§ Left-most derivation: the leftmost nonterminal is replaced
expr ⟹ expr op expr

⟹ expr op expr op expr
⟹ id op expr op expr
⟹ id * expr op expr
⟹ id * id op expr
⟹ id * id + expr
⟹ id * id + id 9

Context-Free Grammars

Parse Tree
§ Represents a derivation graphically
§ Example: Parse tree for the string:

slope * x + intercept

10

Context-Free Grammars

§ Different parse tree for: slope * x + intercept
§ Tree allowed by the grammar but incorrect for the expression

§ Ambiguous grammar: two different parse trees for one string
§ Ambiguity is a problem for parsers
§ We want unambiguous grammars

11

Context-Free Grammars

§ Better version – unambiguous
§ Captures associativity and precedence

expr → term | expr add_op term
term → factor | term mult_op factor
factor → id | number | - factor | (expr)
add_op → + | -
mult_op → * | /

12

Context-Free Grammars

§ Parse tree for: 3 + 4 * 5
§ Precedence rules

13

Context-Free Grammars

§ Parse tree for: 10 - 4 - 3
§ Left-associativity rules

14

Scanning

Scanning = Lexical Analysis
§ tokenizing source
§ removing comments
§ saving text of identifiers, numbers, strings
§ saving source locations (file, line, column) for error

messages

15

Scanning

§ Example: simple calculator language

assign → := (Algol style; C has ‘=’)
plus → +
minus → -
times → *
div → /
lparen → (
rparen →)
id → letter (letter | digit)* (except for read and write)
number → digit digit* | digit* (. digit | digit .) digit*
comment → /* (non-* | * non-/)* *+/

| // (non-newline)* newline

16

Scanning

Ad-hoc scanner
§ Longest possible

token extracted
§ White spaces

are delimiters

17

Scanning

§ Structured
scanner

§ DFA – Deterministic
Finite Automaton

§ Separate final state
for each token
category

18

Scanning

§ DFA
§ Built automatically from regular expressions
§ Tools: lex, flex, scagen
§ Difficult to build directly

§ build first an NFA – Nondeterministic FA
§ convert to DFA
§ minimize DFA (smallest number of states)

19

Scanning

§ Reg.exp. to NFA
§ Follows the

structural definition
of regular
expressions

20

Scanning

§ Reg.exp. to NFA
§ Example:
d* (. d | d .) d*

21

Scanning

§ NFA to DFA
§ Example:
d* (. d | d .) d*

22

Scanning

§ DFA minimization
§ Example: d* (. d | d .) d*

23

Scanning

§ Scanners are built three ways:
§ ad-hoc:

§ fastest, most compact code
§ semi-mechanical pure DFA

§ nested case statements
§ table-driven DFA

§ automatically-generated scanners

§ “Longest-possible token” rule
§ return only when next character cannot continue current token
§ the next character needs to be saved for the next token

§ Keywords
§ DFA would need many states to identify
§ Better treat keywords as exceptions to the identifier rule

24

Scanning

§Nested case statement DFA

state := 1
loop
read cur_char
case state of

1: case cur_char of
‘ ‘, ‘\t’, ‘\n’: …
‘a‘ … ‘z’: …
‘0‘ … ‘9’: …
‘>’ : …
…

2: case cur_char of
…

n: case cur_char of
…

25

. . .

Scanning

§Look-ahead
§ May need to peek at more than one character
§ look-ahead – characters necessary to decide
§ Example: Pascal

§ have 3 so far and see ‘.’
§ 3.14 or 3..5 may follow

§ Example: Fortran
§ arbitrarily long look-ahead
§ DO 5 I = 1,25

§ execute statements up to 5 for I from 1 to 25
§ DO 5 I = 1.25

§ assign 1.25 to the variable DO5I
§ NASA’s Mariner 1 may have been lost due to ‘.’ i.o ‘,’
§ Fortran 77 has better syntax: DO 5,I = 1,25

26

Scanning

§Table-driven scanning

(continued on next slide)

27

Scanning
Table-driven
scanning
(cont’d)

28

Scanning

§ Scanner table used by previous code
§ state 17: white spaces; state 18: comments
§ scan_tab: entire table but last column
§ token_tab: last column
§ keyword_tab = {read, write}

29

Scanning

§Lexical errors
§ Very few – most strings correspond to some token
§ Should recover to enable the compiler to detect more errors

§ throw away the current, invalid, token
§ skip forward to the next possible beginning of a new token
§ restart the scanning algorithm
§ count on the error-recovery mechanism of the parser to cope with a

syntactically invalid sequence of tokens

30

Programming
Language Syntax

- LL parsing -
Chapter 2, Section 2.3

Parsing

§Parser
§ in charge of the entire compilation process

§ Syntax-directed translation
§ calls the scanner to obtain tokens
§ assembles the tokens into a syntax tree
§ passes the tree to the later phases of the compiler

§ semantic analysis
§ code generation
§ code improvement

§ a parser is a language recognizer
§ context-free grammar is a language generator

2

Parsing

§Context-free language recognition
§ Earley, Cocke-Younger-Kasami alg’s
§ O(n3) time

§ too slow
§ There are classes of grammars with O(n) parsers:

§ LL: 'Left-to-right, Leftmost derivation'.
§ LR: 'Left-to-right, Rightmost derivationʼ

3

Parsing

§ Top-down vs.
Bottom-up

§ Top-down
§ predict based on next

token

§ Bottom-up
§ reduce right-hand side
§ Example:

A, B, C;

4

Parsing

§Bottom-up
§ better

grammar
§ cannot be

parsed top-
down

§ Example:
A, B, C;

5

Parsing

§LL(k), LR(k)
§ k = no. tokens of look-ahead required to parse
§ almost all real compilers use LL(1), LR(1)
§ LR(0) - prefix property:

§ no valid string is a prefix of another valid string

6

LL Parsing

§ LL(1) grammar for calculator language
§ less intuitive: operands not on the same right-hand side
§ parsing is easier ($$ added to mark the end of the program)

program → stmt_list $$
stmt_list → stmt stmt_list | ε
stmt → id := expr | read id | write expr
expr → term term_tail
term_tail → add_op term term_tail | ε
term → factor fact_tail
fact_tail → mult_op fact fact_tail | ε
factor → (expr) | id | number
add_op → + | -
mult_op → * | /

§ Top-down parsers
§ by hand – recursive descent
§ table-driven

§ compare with LR grammar:
expr → term | expr add_op term
term → factor | term mult_op factor
factor → id | number | - factor | (expr)
add_op → + | -
mult_op → * | /

7

LL Parsing

§ Recursive
descent parser
§ one subroutine

for each
nonterminal

§ Example:
read A
read B
sum := A + B
write sum
write sum / 2

§ Continued on
the next slide

8

LL Parsing

9

LL Parsing
§Parse tree for:

read A
read B
sum := A + B
write sum
write sum / 2

10

LL Parsing

§Table-driven LL parsing:
§ repeatedly look up action in 2D table based on:

§ current leftmost non-terminal and
§ current input token

§ actions:
§ (1) match a terminal
§ (2) predict a production
§ (3) announce a syntax error

11

LL Parsing

§Table-driven LL parsing:
§ Push-down automaton (PDA)

§ Finite automaton with a stack
§ Example: balanced parentheses: input / pop / push

§ Parsing stack: containing the expected symbols
§ initially contains the starting symbol
§ predicting a production: push the right-hand side in reverse order

12

L
L

Pa
rs

in
g

§ Table-
driven
LL
parsing:

13

LL Parsing
§ LL(1): parse_tab

for parsing for
calculator language

§ productions: 1..19
§ ‘-’ means error
§ prod_tab (not

shown) gives RHS

14

1 program → stmt_list $$
2,3 stmt_list → stmt stmt_list | ε
4,5,6 stmt → id := expr | read id | write expr
7 expr → term term_tail
8,9 term_tail → add_op term term_tail | ε
10 term → factor fact_tail
11,12 fact_tail → mult_op fact fact_tail | ε
13,14,15 factor → (expr) | id | number
16,17 add_op → + | -
18,19 mult_op → * | /

LL Parsing
read A
read B
sum := A + B
write sum
write sum / 2

§ Example:

15

LL Parsing

16

read A
read B
sum := A + B
write sum
write sum / 2

§ Example:

LL Parsing

§How to build the table:
§ FIRST(α) – tokens that can start an α
§ FOLLOW(A) – tokens that can come after an A

EPS(α) ≡ if α ⟹* ε then true else false
FIRST(α) ≡ {c | α ⟹* cβ }
FOLLOW(A) ≡ {c | S ⟹+ αAcβ }
PREDICT(A → α) ≡ FIRST(α) ∪

if EPS(α) then FOLLOW(A) else ∅

§ If a token belongs to the predict set of more than one
production with the same left-hand side, then the grammar
is not LL(1)

§ Compute: pass over the grammar until nothing changes
§ Algorithm and examples on the next slides

17

LL Parsing
§ Constructing EPS, FIRST, FOLLOW, PREDICT

18

LL Parsing
§ Algorithm for constructing EPS, FIRST, FOLLOW, PREDICT

(Continued on the next slide)

19

LL Parsing
§ Algorithm for constructing EPS, FIRST, FOLLOW, PREDICT

20

LL Parsing
§ Example: the sets EPS, FIRST, FOLLOW, PREDICT

21

EPS(A) is true iff
A ∈ {stmt_list, term_tail, factor_tail}

LL Parsing
§ Problems trying to make a grammar LL(1)

§ left recursion: A ⟹+ Aα
§ example – cannot be parsed top-down

id_list → id_list_prefix ;
id_list_prefix → id_list_prefix , id
id_list_prefix → id

§ solved by left-recursion elimination

id_list → id id_list_tail
id_list_tail → , id id_list_tail
id_list_tail → ;

§ General left-recursion elimination:
A → Aα1 | Aα2 | … | Aαn | 𝛽1 | 𝛽2 | … | 𝛽m

replaced by:
A → 𝛽1B| 𝛽2B| … | 𝛽mB
B → α1B| α2B| … | αnB | 𝜀

22

LL Parsing

§ Problems trying to make a grammar LL(1)
§ common prefixes

§ example

stmt → id := expr
stmt → id (argument_list)

§ solved by left-factoring

stmt → id stmt_list_tail
stmt_list_tail → := expr
stmt_list_tail → (argument_list)

§ Note: Eliminating left recursion and common prefixes does NOT make a
grammar LL; there are infinitely many non-LL languages, and the
automatic transformations work on them just fine

23

LL Parsing

§ Problems trying to make a grammar LL(1)
§ the dangling else problem
§ prevents grammars from being LL(k) for any k
§ Example: ambiguous (Pascal)

stmt → if cond then_clause else_clause | other_stmt
then_clause → then stmt
else_clause → else stmt | ε

if C1 then if C2 then S1 else S2

24

LL Parsing

§ Dangling else problem
§ Solution: unambiguous grammar
§ can be parsed bottom-up but not top-down

§ there is no top-down grammar

stmt → balanced_stmt | unbalanced_stmt
balanced_stmt → if cond then balanced_stmt else balanced_stmt

| other_stmt
unbalanced_stmt → if cond then stmt

| if cond then balanced_stmt else unbalanced_stmt

25

LL Parsing

§ Dangling else problem
§ Another solution - end-markers

stmt → IF cond then_clause else_clause END | other_stmt
then_clause → THEN stmt_list
else_clause → ELSE stmt_list | ε

§ Modula-2, for example, one says:

if A = B then
if C = D then E := F end

else
G := H

end

§ Ada: end if
§ other languages: fi

26

LL Parsing

§ Problem with end markers: they tend to bunch up
if A = B then …
else if A = C then …
else if A = D then …
else if A = E then …
else ...
end end end end

§ To avoid this: elsif
if A = B then …
elsif A = C then …
elsif A = D then …
elsif A = E then …
else ...
end

27

Programming
Language Syntax

- LR parsing -
Chapter 2 , Section 2.3

LR Parsing

§ LR parsers
§ maintain a forest of subtrees of the parse tree
§ join trees together when recognizing a RHS
§ keeps the roots of subtrees in a stack
§ shift: tokens from scanner into the stack
§ reduce: when recognizing a RHS, pop it, push LHS
§ discovers a right-most derivation in reverse

Stack contents (roots of partial trees) Remaining input
ε A, B, C;
id (A) , B, C;
id (A), B, C;
id (A), id (B) , C;
id (A), id (B), C;
id (A), id (B), id (C) ;
id (A), id (B), id (C) ;
id (A), id (B), id (C) id_list_tail
id (A), id (B) id_list_tail
id (A) id_list_tail
id_list

2

LR Parsing

§ Example: LR(1) grammar for calculator language
1. program → stmt_list $$
2. stmt_list → stmt_list stmt
3. stmt_list → stmt
4. stmt → id := expr
5. stmt → read id
6. stmt → write expr
7. expr → term
8. expr → expr add_op term
9. term → factor
10. term → term mult_op factor
11. factor → (expr)
12. factor → id
13. factor → number
14. add_op → +
15. add_op → -
16. mult_op → *
17. mult_op → /

§ Compare with previous LL(1)
§ left recursive prod. is better
§ keeps operands together

program → stmt list $$
stmt_list → stmt stmt_list | ε
stmt → id := expr | read id | write expr
expr → term term_tail
term_tail → add op term term_tail | ε
term → factor fact_tail
fact_tail → mult_op fact fact_tail | ε
factor → (expr) | id | number
add_op → + | -
mult_op → * | /

3

LR Parsing

§ LR parser
§ recognizes right-hand sides of productions

§ keep track of productions we might be in the middle of
§ and where: represent the location in an RHS by a ‘⦁’

§ Example:

read A
read B
sum := A + B
write sum
write sum / 2

4

LR Parsing

§ start with:
program → ⦁ stmt_list $$ – this is called an LR-item

§ ‘⦁’ in front of stmt_list means we may be about to see the
yield of stmt_list, that is, we could also be at the beginning of
a production with stmt_list on LHS:

stmt_list → ⦁ stmt_list stmt
stmt_list → ⦁ stmt

§ similarly, we need to include also:
stmt → ⦁ id := expr
stmt → ⦁ read id
stmt → ⦁ write expr

§ Only terminals follow, so we stop
5

LR Parsing

§ the state we have obtained is:
program → ⦁ stmt_list $$ (the basis) (state 0)
stmt_list → ⦁ stmt_list stmt (closure …
stmt_list → ⦁ stmt …
stmt → ⦁ id := expr …
stmt → ⦁ read id …
stmt → ⦁ write expr …)

§ next token: read - the next state is:
stmt → read ⦁ id (empty closure) (state 1)

§ next token: A - the next state is:
stmt → read id ⦁ (state 1’)

§ ‘⦁’ at the end means we can reduce
§ what is the new state?

6

LR Parsing

§ replace read id with stmt
stmt_list → ⦁ stmt becomes
stmt_list → stmt ⦁ (state 0’)

§ we reduce again: replace stmt with stmt_list
§ this means shifting a stmt_list in state 0:

program → stmt_list ⦁ $$ (basis … (state 2)
stmt_list → stmt_list ⦁ stmt …)
stmt → ⦁ id := expr (closure …
stmt → ⦁ read id …
stmt → ⦁ write expr …)

§Complete states on next slides

7

LR Parsing

8

9

10

11

LR Parsing

§ LL(1) parser: decides using nonterminal + token
§ LR(1) parser: decides using state + token

§ CFSM: Characteristic Finite State Machine
§ Almost always table-driven

12

LR Parsing

§ Parse table parse_tab
§ shift (s) followed by state
§ reduce (r), shift + reduce (b) followed by production

13

LR Parsing

§ Algorithm
§ uses the
parse_tab
(previous slide)
and prod_tab
(not shown)

§ example after
algorithm for:

read A
read B
sum := A + B
write sum
write sum / 2

14

LR Parsing

15

LR Parsing

16

LR Parsing

17

LR Parsing

§ Shift/reduce conflict
§ two items in a state:

§ one with ‘⦁’ in front of terminal (shift)
§ one with ‘⦁’ at the end (reduce)

§ SLR (simple LR)
§ conflict can be resolved using FIRST and FOLLOW

§ Example: state 6
§ stmt → write expr ⦁
§ expr → expr ⦁ add_op term
§ FIRST(add_op) ∩ FOLLOW(stmt) = ∅

18

LL(1) vs SLR(1)

§ LL(1)
§ For any productions A → u | v:

§ FIRST(u) ∩ FIRST(v) = ∅
§ at most one of u and v can derive the empty string ε
§ if v =>* ε, then FIRST(u) ∩ FOLLOW(A) = ∅

§ SLR(1)
§ No shift/reduce conflict: cannot have in the same state:

A → u ⦁ xv, B → w ⦁ , with x ∈ FOLLOW(B)
§ No reduce/reduce conflict: cannot have in the same state:

A → u ⦁ , B → v ⦁ , with FOLLOW(A) ∩ FOLLOW(B) ≠ ∅

19

Unambiguous vs LL(1) vs SLR(1)

20

Unambiguous

LL(1) SLR(1)

Names, Scopes
and Bindings

Chapter 3

Name, Scope, and Binding

§ Ease of programming – main driving force behind
the design of modern languages

§Core issues in language design:
§ names – abstraction
§ control flow
§ types, composite types
§ subroutines – control abstraction
§ classes – data abstraction

§High level programming – more abstract
§ Farther from hardware

§ Abstraction – complexity becomes manageable
§ This is true in general

2

Name, Scope, and Binding

§Name: a character string representing something else
§ Abstraction
§ Easy for humans to understand
§ Much better than addresses

§ Binding: association of two things
§ Example: between a name and the thing it names

§ Scope of a binding: the part of the program
(textually) in which the binding is active

§ Binding Time: the point at which a binding is created

3

Binding

§ Static vs. Dynamic
§ Static: bound before run time
§ Dynamic: bound at run time

§ Trade-off:
§ Early binding times: greater efficiency
§ Late binding times: greater flexibility

§Compiled vs. Interpreted languages
§ Compiled languages tend to have early binding times
§ Interpreted languages tend to have late binding times

Language Binding Time Advantage
Compiled Early (static) Efficiency
Interpreted Late (dynamic) Flexibility

4

Lifetime and Storage Management

§ Lifetime of name-to-binding:
§ from creation to destruction
§ Object’s lifetime ≥ binding’s lifetime

§ Example: C++ variable passed by reference (&)
§ Object’s lifetime < binding’s lifetime – dangling reference

§ Example: C++ object
§ created with new
§ passed by reference to subroutine with &
§ deallocated with delete

§ Scope of a binding:
§ the textual region of the program in which the binding is

active

5

Lifetime and Storage Management

§Storage Allocation mechanisms:

§ Static
§ absolute address, retained throughout the program

§ Stack
§ last-in, first-out order; for subroutines calls and returns

§Heap
§ allocated and deallocated at arbitrary times

6

Lifetime and Storage Management

§ Static allocation:
§ global variables
§ code instructions
§ explicit constants (including strings, sets, etc.)

§ A = B / 14.7
§ printf(“hello, world\n”)
§ small constants may be stored in the instructions

§ C++ static variables (or Algol own)

§ Statically allocated objects that do not change value are
allocated in read-only memory
§ constants, instructions

7

Lifetime and Storage Management

§ Stack-based allocation:
§ parameters, local variables, temporaries
§ allocate space for recursive routines
§ reuse space

§ Frame (activation record) for each subroutine call:
§ position in stack: frame pointer
§ arguments and returns
§ local variables, temporaries:

§ fixed offset from the frame pointer at compile time
§ return address
§ dynamic link: reference to (stack frame of) caller
§ static link: reference to (stack frame of) routine inside which it

was declared

8

Lifetime and Storage Management

9

Lifetime and Storage Management

§Heap allocation
§ (different from “heap” data structure for priority queues)
§ dynamic allocation: lists, sets, strings (size can change)
§ single linked list of free blocks
§ fragmentation: internal, external

10

Lifetime and Storage Management

§Heap allocation
§ allocation algorithms

§ first fit, best fit– O(n) time
§ pool allocation – O(1) time

§ separate free list of blocks for different sizes
§ buddy system: blocks of size 2k
§ Fibonacci heap: blocks of size Fibonacci numbers

§ defragmentation

11

Lifetime and Storage Management

§Heap maintenance
§ Explicit deallocation

§ C, C++
§ simple to implement
§ efficient
§ object deallocated too soon – dangling reference
§ object not deallocated at the end of lifetime – memory leak
§ deallocation errors are very difficult to find

§ Implicit deallocation: garbage collection
§ functional, scripting languages
§ C#, Java, Python
§ avoid memory leaks (difficult to find otherwise)
§ recent algorithms more efficient
§ the trend is towards automatic collection

12

Scope Rules

§ Scope of a binding:
§ textual region of the program in which binding is active

§ Subroutine entry – usually creates a new scope:
§ create bindings for new local variables
§ deactivate bindings for redeclared global variables
§ make references to variables

§ Subroutine exit:
§ destroy bindings for local variables
§ reactivate bindings for deactivated global variables

§ Scope: maximal program section in which no bindings change
§ block: module, class, subroutine
§ C: { … }
§ Elaboration time: when control first enters a scope

13

Scope Rules

§ Referencing environment
§ the set of active bindings; determined by:
§ Scope rules (static or dynamic)
§ Binding rules (deep or shallow)

§ Static Scoping (Lexical Scoping)
§ almost all languages employ static scoping
§ determined by examining the text of the program
§ at compile time
§ closest nested rule

§ identifiers known in the scope where they are declared and
in each enclosed scope, unless re-declared

§ examine local scope and statically enclosing scopes until a
binding is found

14

Scope Rules

§ Subroutines
§ bindings created are destroyed at subroutine exit

§ exception: static (C), own (Algol)
§ nested subroutines: closest nested scope

§ Python, Scheme, Ada, Common Lisp
§ not in: C, C++, Java

§ access to non-locals: scope resolution operator
§ C++ (global): ::X
§ Ada: MyProc.X

§ built-in objects
§ outermost scope
§ outside global

15

Scope Rules

§ Example:
Nested subroutines

16

Scope Rules
§Access to non-locals: static links

§ each frame points to the frame of the routine inside which it
was declared

§ access a variable in a scope k levels out by following k static
links and then using the known offset within the frame

17

Scope Rules

§Declaration order
§ object x declared inside block B
§ the scope of x may be:

§ the entire block B or
§ only the part of B after x’s declaration

18

Scope Rules

§Declaration order

§ Example: C++
int n = 1;
void f(void){

int m = n; // global n
int n = 2; // local n

}

§ Example: Python – no declarations
n = 1
def f():

m = n # error
add “global n” to use the global n

n = 2
19

Scope Rules

§Declaration order

§ Example: Scheme

(let ((A 1))
(let ((A 2)

(B A))
B)) ; return 1

(let ((A 1))
(letrec ((A 2)

(B A))
B)) ; return 2

20

Scope Rules

§Dynamic Scoping
§ binding depends on flow at run time

§ use the most recent, active binding made at run time
§ Easy to implement – just a stack with names
§ Harder to understand

§ not used any more
§ why learn? – history

21

Scope Rules

§ Example: Dynamic Scoping

n: integer – global
procedure first()

n := 1
procedure second()

n : integer – local
first()

n := 2
if read_integer() > 0

second()
else

first()
write_integer(n)

§ Static scoping: prints 1
§ Dynamic scoping: prints 2 for positive input, 1 for negative

22

Scope Rules

§ Example: Dynamic scoping problem
§ scaled_score uses the wrong max_score

max_score : integer –– maximum possible score
function scaled_score(raw_score : integer) : real

return raw_score / max_score * 100
...
procedure foo()

max_score : real := 0 –- highest % seen so far
...
foreach student in class

student.percent := scaled_score(student.points)
if student.percent > max_score

max_score := student.percent
23

Binding of Referencing Environments

§ Referencing environment: the set of active bindings
§ static: lexical nesting
§ dynamic: order of declarations at run time

§ Reference to subroutine: when are the scope rules applied?
§ Shallow binding: when routine is called

§ default in dynamic scoping
§ Deep binding: when reference is created

§ default in static scoping
§ Example (next slides)

24

Binding of Referencing Environments
§ print_routine

§ shallow binding
§ to pick line_length

§ older_than_threshold
§ deep binding
§ otherwise, if print_selected_records

has a variable threshold, it will hide the
one in the main program

25

Binding of Referencing Environments

26

Binding of Referencing Environments

§Deep binding implementation: subroutine closure
§ explicit representation of a referencing environment

(the one in which the subroutine would execute if called now)
§ reference to subroutine

§ Why binding time matters with static scoping?
§ the running program may have two instances of an object
§ only for objects that are neither local nor global
§ Examples when it does not matter:

§ subroutines cannot be nested: C
§ only outermost subroutines can be passed as parameters:

Modula-2
§ subroutines cannot be passed as parameters: PL/I, Ada 83

27

Binding of Referencing Environments
§ Example: Deep binding in Python

def A(I, P):
def B():

print(I)
body of A:
if I > 1:

P()
else:

A(2, B)
def C():

pass # do nothing
A(1, C) # main program; output 1

§ referencing environment captured in closures: dashed boxes, arrows
§ when B is called via P, two instances of I exist
§ the closure for P was created in the initial invocation of A
§ B’s static link (solid arrow) points to the frame of the earlier invocation

28

Binding of Referencing Environments

§ First-class values
§ can be passed as a parameter
§ can be returned from subroutine
§ can be assigned into a variable

§ Second-class values
§ can only be passed as a parameter

§ Third-class: none
§ Other authors may have different definitions: no second-class; first-

class may require anonymous function definition (lambda expressions)
§ Subroutines:

§ first-class: functional and scripting languages, C#
§ C, C++: pointers to functions are first-class

§ second-class: most imperative languages
§ third class: Ada83

29

Binding of Referencing Environments

§ First-class subroutines: additional complexity
§ a reference to a subroutine may outlive the execution of the scope

in which that subroutine was declared
§ Example: Scheme

(define plus-x
(lambda (x)
(lambda (y)(+ x y))))

(let ((f (plus-x 2)))
(f 3)) ; return 5

§ plus-x returns an unnamed function (3rd line), which uses the
parameter x of plus-x

§ when f is called in 5th line, its referencing environment includes the
x in plus-x, even though plus-x has already returned

§ x must be still available – unlimited extent – allocate on heap (C#)

30

Binding of Referencing Environments

§ Lambda expressions
§ come from lambda calculus: anonymous functions

§ Example: Scheme

((lambda (i j) (> i j) i j) 5 8) ;return 8

§ Example: C#: delegate or =>

(int i, int j) => i > j ? i : j

31

Binding of Referencing Environments

§ First-class subroutines
§ are increasingly popular; made their way into C++, Java
§ Problem: C++, Java do not support unlimited extent

§ Example: C++

for_each(V.begin(), V.end(),

[](int e){ if (e < 50) cout << e << “ “; }

);

32

Binding of Referencing Environments

§ Lambda functions in Python
§ Example

ids = ['id1', 'id2', 'id30', 'id3', 'id22', 'id100’]

Lexicographic sort
print(sorted(ids))
=> ['id1', 'id100', 'id2', 'id22', 'id3', 'id30’]

Integer sort
sorted_ids = sorted(ids, key=lambda x: int(x[2:]))
print(sorted_ids)
=> ['id1', 'id2', 'id3', 'id22', 'id30', 'id100’]

33

Binding of Referencing Environments

§ Lambda functions in Python
§ Example

def myfunc(n):
return lambda a : a * n

mydoubler = myfunc(2)
print(mydoubler(11))
=> 22

mytripler = myfunc(3)
print(mytripler(11))
=> 33

34

Semantic Analysis

Chapter 4

Role of Semantic Analysis

§ Syntax
§ “form” of a program
§ “easy”: check membership for CFG
§ linear time

§ Semantics
§ meaning of a program
§ impossible: program correctness undecidable!
§ we do whatever we can

2

Role of Semantic Analysis

§ Static semantics – compile time
§ enforces static semantic rules at compile time
§ generates code to enforce dynamic semantic rules
§ constructs a syntax tree
§ information gathered for the code generator

§Dynamic semantics – run time
§ division by zero
§ index out of bounds

§ Semantic analysis (and intermediate code generation) –
described in terms of annotation (decoration) of parse tree or
syntax tree
§ annotations are attributes – attribute grammars

3

Role of Semantic Analysis

§ Parse tree review

4

Role of Semantic Analysis

§ Parse tree review (cont’d)

5

Role of Semantic Analysis

§ Parse tree can be replaced by the smaller syntax tree (review)

6

Role of Semantic Analysis

§Dynamic checks
§ compiler generates code for dynamic checking
§ can be disabled for increased speed

§ Tony Hoare: “The programmer who disables semantic checks
is like a sailing enthusiast who wears a life jacket when training
on dry land but removes it when going to sea.”

§ C – almost no checks
§ Java – as many checks as possible
§ trend is towards stricter rules
§ Example: 3 + “four”

§ Perl – attempts to infer meaning
§ Python – run-time error

7

Role of Semantic Analysis

§ Logical Assertions
§ Java:

assert denominator != 0;
AssertionError – exception thrown if semantic check fails

§ C:
assert(denominator != 0);
myprog.c:42: failed assertion ‘denominator != 0’

§ Python:
assert denominator != 0, “Zero denominator!”
AssertionError: Zero denominator!

§ Invariants, preconditions, postconditions
§ Euclid, Eiffel, Ada
§ invariant: expected to be true at all check points
§ pre/postconditions: true at beginning/end of subroutines

8

Role of Semantic Analysis

§ Static analysis
§ compile-time algorithms that predict run-time behavior
§ extensive static analysis eliminates the need for some

dynamic checks
§ precise type checking
§ enforced initialization of variables

9

Attribute Grammars

§ Attribute grammar:
§ formal framework for decorating the parse or syntax tree
§ for semantic analysis
§ for (intermediate) code generation

§ Implementation
§ automatic

§ tools that construct semantic analyzers (attribute evaluator)
§ ad hoc

§ action routines

10

Attribute Grammars

§ Example: LR (bottom-up) grammar
§ arithmetic expr. with constants, precedence, associativity
§ the grammar alone says nothing about the meaning
§ attributes: connection with mathematical concept

1. E1 → E2 + T
2. E1 → E2 - T
3. E → T
4. T1 → T2 * F
5. T1 → T2 / F
6. T → F
7. F1 → - F2
8. F → (E)
9. F → const

11

Attribute Grammars

§Attribute grammar
§ S.val: the arithmetic value of the string derived from S
§ const.val: provided by the scanner
§ copy rules: 3, 6, 8, 9
§ semantic functions: sum , diff , prod , quot, add_inv

§ use only attributes of the current production

1. E1 → E2 + T ⊳ E1.val := sum(E2.val, T.val)
2. E1 → E2 - T ⊳ E1.val := diff(E2.val, T.val)
3. E → T ⊳ E.val := T.val
4. T1 → T2 * F ⊳ T1.val := prod(T2.val, F.val)
5. T1 → T2 / F ⊳ T1.val := quot(T2.val, F.val)
6. T → F ⊳ T1.val := F.val
7. F1 → - F2 ⊳ F1.val := add_inv(F2.val)
8. F → (E) ⊳ F.val := E.val
9. F → const ⊳ F.val := const.val

12

Attribute Grammars

§ Example: LL (top-down) grammar
§ count the elements of a list
§ “in-line” notation of semantic functions

L → id LT ⊳ L.c := 1 + LT.c
LT → , L ⊳ LT.c := L.c
LT → ε ⊳ LT.c := 0

13

Evaluating Attributes

§ Annotation of parse tree:
§ evaluation of attributes
§ also called decoration

§ Example:
§ LR(1) grammar (arithm. exp.)
§ string: (1+3)*2
§ val attribute of root will hold

the value of the expression

14

Evaluating Attributes

§ Types of attributes:
§ synthesized
§ inherited

§ Synthesized attributes:
§ values calculated only in

productions where they appear
only on the left-hand side

§ attribute flow: bottom-up only
§ S-attributed grammar: all

attributes are synthesized

15

Evaluating Attributes

§ Inherited attributes:
§ values calculated when their symbol is on RHS of the production
§ Example: LL(1) grammar for subtraction

expr → const expr_tail
expr_tail → - const expr_tail

→ ε

§ string: 9 - 4 – 3

§ ‘-’ left-associative means
cannot have only bottom-up

§ need to pass 9 to expr_tail to
combine with 4

16

Evaluating Attributes

expr → const expr_tail
⊳ expr_tail.st := const.val
⊳ expr.val := expr_tail.val

expr_tail1 → - const expr_tail2
⊳ expr_tail2.st := expr_tail1.st − const.val
⊳ expr_tail1.val := expr_tail2.val

expr_tail → ε
⊳ expr_tail.val := expr_tail.st

17

Evaluating Attributes
§ Example: Complete LL(1) grammar for arithmetic expressions
§ Complicated because:

§ Operators are left-associative but grammar cannot be left-recursive
§ Left and right operands of an operator are in separate productions

18

Evaluating Attributes

§ Example: LL(1) grammar for arithmetic expressions (cont’d)

19

Evaluating Attributes
§ Example: Annotated

parse tree for the
string (1+3)*2

20

Evaluating Attributes

§ Attribute flow
§ Declarative notation:

§ no evaluation order specified for attributes
§ Well-defined grammar:

§ its rules determine unique values for attributes in any parse tree
§ Non-circular grammar:

§ no attribute depends on itself in any parse tree
§ Translation scheme:

§ algorithm that decorates parse tree in agreement with the
attribute flow

21

Evaluating Attributes

§ Translation scheme:
§ Obvious scheme: repeated passes until no further changes

§ halts only if well defined
§ Dynamic scheme: better performance

§ topologically sort the attribute flow graph
§ Static scheme: fastest, O(n)

§ based on the structure of the grammar
§ S-attributed grammar – simplest static scheme

§ flow is strictly bottom-up; attributes can be evaluated in the
same order the nodes are generated by an LR-parser

22

Evaluating Attributes

§ Attribute A.s is said to depend on attribute B.t if B.t is
ever passed to a semantic function that returns a value for A.s

§ L-attributed grammar:
§ each synthesized attribute of a LHS symbol depends only on

that symbol’s own inherited attributes or on attributes
(synthesized or inherited) of the RHS symbols

§ each inherited attribute of a RHS symbol depends only on
inherited attributes of the LHS symbol or on attributes
(synthesized or inherited) of symbols to its left in the RHS

§ L-attributed grammar
§ attributes can be evaluated by a single left-to-right depth-first

traversal
23

Evaluating Attributes

§ S-attributed implies L-attributed (but not vice versa)
§ S-attributed grammar: the most general class of attribute

grammars for which evaluation can be implemented on the fly
during an LR parse

§ L-attributed grammar: the most general class of attribute
grammars for which evaluation can be implemented on the fly
during an LL parse

§ If semantic analysis interleaved with parsing:
§ bottom-up parser paired with S-attribute translation scheme
§ top-down parser paired with L-attributed translation scheme

24

Syntax Tree

§One-pass compiler
§ interleaved: parsing, semantic analysis, code generation
§ saves space (older computers)

§ no need to build parse tree or syntax tree

§Multi-pass compiler
§ possible due to increases in speed and memory
§ more flexible
§ better code improvement

§ Example: forward references
§ declaration before use no longer necessary

25

Syntax Tree

§ Syntax Tree
§ separate parsing and semantics analysis
§ attribute rules for CFG are used to build the syntax tree
§ semantics easier on syntax tree

§ syntax tree reflects semantic structure better
§ can pass the tree in different order than that of parser

26

§ Bottom-up (S-attributed) attribute grammar to construct
syntax tree

27

Syntax Trees Construction

§ Bottom-up (S-attributed) attribute grammar to construct
syntax tree (cont’d)

28

Syntax Trees Construction

Syntax Trees Construction
§ Syntax tree construction for (1+3)*2

29

Syntax Trees Construction
§ Syntax tree

construction
for (1+3)*2
(cont’d)

30

Syntax Trees Construction
§ Top-down (L-attributed) attribute grammar to construct

syntax tree

31

Syntax Trees Construction
§ Top-down (L-attributed) attribute grammar to construct

syntax tree (cont’d)

32

Syntax Trees Construction
§ Syntax tree for (1+3)*2

33

Syntax Trees Construction
§ Syntax tree for (1+3)*2 (cont’d)

34

Action Routines

§ There are automatic tools for:
§ Context-free grammar ⟹ parser
§ Attribute grammar ⟹ semantic analyzer (attrib. eval.)

§ Action routines
§ ad-hoc approach; most ordinary compilers use (!)
§ Interleave parsing, syntax tree construction, other aspects of

semantic analysis, code generation
§ Action routine: Semantic function that the programmer

(grammar writer) instructs the compiler to execute at some
point in the parse

§ In an LL grammar, can appear anywhere in the RHS; called as
soon as the parser matched the (yield of the) symbol to the left

35

Action Routines - Example

§ LL(1) grammar for expressions
§ with action routines for building the syntax tree
§ only difference from before: actions embedded in RHS

36

Action Routines - Example

§ Recursive descent parsing with embedded action routines:

§ does the same job as productions 2-4:

37

Action Routines - Example

§ Bottom-up evaluation
§ In LR-parser action routines cannot be embedded at arbitrary

places in the RHS
§ the parser needs to see enough to identify the production, i.e.,

the RHS suffix that identifies the production uniquely
§ Previous bottom-up examples are identical with the action

routine versions

38

Control Flow

Chapter 6

Control Flow

§ Basic paradigms for control flow:
§ Sequencing
§ Selection
§ Iteration
§ Procedural Abstraction
§ Recursion
§ Concurrency
§ Exception Handling
§ Nondeterminacy

2

Control Flow

§ Sequencing:
§ major role in imperative languages
§ minor role in functional languages

§ Recursion
§ major role in functional languages
§ less important in imperative languages (iteration)

§ Logic programming
§ no control flow at all
§ programmer specifies a set of rules
§ the implementation finds the order to apply the rules

3

Expression Evaluation

§ Expression: operands and operators
§ Operator

§ function: a + b means +(a, b)
§ Ada: a+b is short for “+”(a,b)
§ C++: a+b is short for a.operator+(b)

§ Notation
§ prefix + a b or +(a, b) or (+ a b)
§ infix a + b
§ postfix a b +

§ Infix: common notation; easy to work with
§ Pre/Postfix: precedence/associativity not needed

4

Expression Evaluation

§ Infix: binary operators:
a + b

§ Prefix: unary operators, function calls (with parentheses)
-4, f(a, b)

§ Scheme: prefix always – Cambridge Polish notation
(+ (* 1 2) 3)

(append x y my_list)

§ Postfix: Pascal dereferencing ^, C post in/decrement
a++, a--

§ Ternary operators: C++ conditional operator ‘?:’
(a > b) ? a : b

5

Expression Evaluation

§ Precedence, associativity
§ Fortran example: a + b * c ** d ** e / f
§ Precedence levels
§ C, C++, Java, C#: too many levels to remember (15)
§ Pascal: too few for good semantics

if A < B and C < D then … means
if A < (B and C) < D then …

§ Fortran has 8 levels
§ Ada has 6 (it puts and & or at same level)
§ Associativity: usually left associative

§ Right associative; C: a = b = c means a = (b = c)
§ Lesson: when unsure, use parentheses!

6

E
xp

re
ss

io
n

E
va

lu
at

io
n

7

Expression Evaluation

§ Side Effect:
§ any effect other than returning a value to surrounding context
§ essential in imperative programming

§ computing by side effects
§ (pure) functional languages: no side effects

§ same value returned by an expression at any point in time
§ Value vs Reference

§ d = a value of a
§ a = b + c location of a
§ Value model: a variable is a named container for a value

§ C, Pascal, Ada
§ Reference model: a variable is a named reference to a value

§ Scheme, Lisp, Python, Clu

8

Expression Evaluation
§ Example:

b := 2
c := b
a := b + c

§ Pascal (value model):
§ any variable can contain

value 2
§ Clu (reference model):

§ there is only one 2

§ value
model

§ reference
model

a 4

b
2

c

4

2

2

a

b

c

9

Expression Evaluation

§ Value vs Reference
§ Java: in-between

§ built-in types – value model
§ user-defined types – reference model
§ drawback: built-in types cannot be passed when user-defined is

expected – wrapping is used (boxing)
§ C#: user can choose

§ class – reference
§ struct – value

§ Important to distinguish between variables referring to:
§ the same object or
§ different objects whose values happen to be equal
§ Scheme, Lisp provide several notions of “equality”

10

Subroutines: Parameter Passing

§ Call by value: pass the value
§ C, C++, Pascal, Java, C#

§ Call by reference: pass the address
§ Fortran, C++, C (pointers)

§ Call by sharing:
§ Java, C#, Python, Scheme

§ Call by name: direct substitution; evaluated each
time it is needed
§ Algol 60, Simula

§ Call by need: call by name with memoization
§ Haskell, R

Short-circuiting

§ Short-circuiting
(a < b) && (c < d)

§ if a > b then the second part does not matter
§ Short-circuit evaluation: evaluate only what is needed

§ Lazy evaluation
§ can save time:

if (unlikely_cond && expensive_cond) ...

§ Semantics change:
§ Avoiding out-of-bounds indices:

if (i >= 0 && i < MAX && A[i] > foo) ...
§ Avoiding division by zero:

if (d == 0 || n/d < threshold) ...

12

Short-circuiting: example

§ C list searching:
while (p && p->key != val)

p = p -> next;
§ Pascal does not have short circuit:

p := my_list;
still_searching := true;
while still_searching do

if p = nil then
still_searching := false

else if p^.key = val then
still_searching := false

else p := p^.next;

§ Sometimes side effects are desired
§ C has also non-short-circuit: &, |

13

Short-circuiting: implementation
if ((A > B) and (C > D)) or (E ≠ F) then then_clause

else else_clause

14

§ Without short circuit
r1 := A –– load
r2 := B
r1 := r1 > r2
r2 := C
r3 := D
r2 := r2 > r3
r1 := r1 & r2
r2 := E
r3 := F
r2 := r2 ≠ r3
r1 := r1 | r2
if r1 = 0 goto L2

L1: then_clause -- (L1 unused)
goto L3

L2: else_clause
L3:

§ With short circuit
(jump code)

r1 := A
r2 := B
if r1 <= r2 goto L4
r1 := C
r2 := D
if r1 > r2 goto L1

L4: r1 := E
r2 := F
if r1 = r2 goto L2

L1: then_clause
goto L3

L2: else_clause
L3:

Iteration

§ Arbitrary complexity of programs:
§ Iteration – for, while, …
§ Recursion

§ Iterate over collections
§ Iterator objects:

§ C++, Java, Euclid
§ True iterators:

§ Python, C#, Ruby, Clu
§ First-class functions

§ Scheme, Smalltalk

15

Iteration

§ Python – user-defined iterator

class PowTwo:
def __init__(self, max = 0):

self.max = max

def __iter__(self):
self.n = 0
return self

def __next__(self):
if self.n < self.max:

result = 2 ** self.n
self.n += 1
return result

else:
raise StopIteration

16

Iteration

§ Python – user-defined iterator

a = PowTwo(3)
i = iter(a)
print(next(i)) # 1
print(next(i)) # 2
print(next(i)) # 4
print(next(i)) # raises StopIteration

17

True iterators

§ Example – Python:

for i in range(first, last, step):

...

§ range – built-in iterator
§ use a call to a yield statement
§ like return but control goes back to iterator after each iteration
§ the iterator continues where it left off

§ yield – separate thread of control
§ its own program counter
§ execution interleaved with that of the for loop

18

True iterators

§ Python generator – much simpler

def PowTwoGen(max = 0):
n = 0
while n < max:

yield 2 ** n
n += 1

a = PowTwoGen(3)
print(next(a)) # 1
print(next(a)) # 2
print(next(a)) # 4
print(next(a)) # raises StopIteration

19

True iterators
§ Python generator: can generate infinite stream

def all_even():
n = 0
while True:

yield n
n += 2

print(next(a)) # 0
print(next(a)) # 2
print(next(a)) # 4
print(next(a)) # 6
print(next(a)) # 8
print(next(a)) # 10
...

20

First-class functions

§ Iteration with first-class functions

(define uptoby
(lambda (low high step f)

(if (<= low high)
(begin

(f low)
(uptoby (+ low step) high step f))

'())))
(let ((sum 0))

(uptoby 1 100 2
(lambda (i)

(set! sum (+ sum i))))
sum) ; 2500

21

Recursion

§ Recursion vs Iteration – efficiency
§ naïve implementation of recursion is less efficient

§ time and space needed for subroutine calls
§ the language can generate fast code for recursion
§ Tail recursion

§ no computation after the recursive call
§ as fast as iteration

int gcd(int a, int b) { /* assume a,b > 0 */
if (a == b) return a;
else if (a > b) return gcd(a-b, b);
else return gcd(a, b-a);

}

22

Recursion

§ Tail recursion
§ can be implemented without the stack allocations
§ a good compiler can recast the recursive function as:

int gcd(int a, int b) { /* assume a,b > 0 */
start:

if (a == b) return a;
else if (a > b) { a = a-b; goto start; }
else { b = b-a; goto start; }

}

23

Recursion

§ Scheme
§ Recursive summation
(define sum1

(lambda (f low high)
(if (= low high)
(f low) ; then
(+ (f low) (sum1 f (+ low 1) high))))) ; else

(sum1 + 1 10) ; 55

24

Recursion

§ Scheme
§ Tail recursive summation

(define sum2
(lambda (f low high st)

(if (= low high)
(+ st (f low))
(sum2 f (+ low 1) high (+ st (f low))))))

(sum2 + 1 10 0) ; 55

§ Eliminate st (subtotal)

(define sum3
(lambda (f low high)

(sum2 f low high 0)))

25

Recursion

§ Careless recursion can be very bad
§ Exponential

def fib1(n):
if n == 0 or n == 1:

return 1
return fib1(n-1) + fib1(n-2)

§ Linear

def fib2(n):
f1 = f2 = 1
for i in range(n-1):

f1, f2 = f2, f1 + f2
return f2

26

Recursion

§ Evaluation order (of subroutine arguments)
§ Applicative: evaluate before passing

§ used by most languages
§ Normal-order: pass unevaluated; evaluate when needed

§ lazy evaluation
§ short-circuit evaluation
§ macros
§ Scheme: used for infinite data structures

§ lazy data structures

27

Recursion

§ Example: Scheme lazy (infinite) data structures
§ delay – a promise
§ force – forces evaluation

(define naturals
(letrec ((next (lambda (n) (cons n (delay (next

(+ n 1)))))))
(next 1)))

(define head car)
(define tail (lambda (stream) (force (cdr
stream))))

(head naturals) => 1

(head (tail naturals)) => 2
(head (tail (tail naturals))) => 3
...

28

Types

Chapters 7, 8

Data Types

§ Types provide implicit context for operations
§ C: a + b

§ integer/floating point addition
§ Pascal: new p

§ allocate right size
§ C: new my_type()

§ allocate right size
§ call right constructor

2

Data Types

§ Boolean
§ true/false; one byte, sometimes one bit
§ C: integers, true = non-0, false = 0

§ Character
§ one byte – ASCII
§ two bytes - Unicode

§ Numeric
§ integers, reals
§ complex: C, Fortran, Scheme (pair of floats)
§ rational: Scheme (pair of integers)

§ Discrete (or ordinal)
§ integers, Booleans, characters
§ countable, well-define predecessor/successor

§ Scalar (or simple): discrete, rational, real, complex
3

Data Types

§ Enumeration
§ introduced in Pascal:
type weekday = (sun, mon, tue, wed, thu, fri, sat);
§ ordered: mon < tue; can index an array

§ Subrange: type test_score = 0..100

§ Composite (non-scalar)
§ Records (struct) – collection of fields
§ Arrays – most common; map from index to elements

§ strings = arrays of characters
§ Sets – powerset of base type
§ Pointers –references to objects; recursive data types
§ Lists – sequence; no map; recursive definition, fundamental in

functional programming
§ Files – like arrays but with current position

4

Type checking

§ Type equivalence: two types are the same
§ Type compatibility: a type can be used in a context
§ Type inference: deduce the type from components
§ Type clash: violation of type rules

5

Type Systems

§ Strongly typed language
§ prohibits any application of an operation to an object that

is not intended to support that operation

§ Statically typed language
§ strongly typed
§ at compile time – good performance
§ C, C++, Java
§ C: more strongly typed with each new version

§ Dynamically typed language
§ at run time - ease of programming
§ Scheme, Lisp, Smalltalk – strongly typed
§ Scripting: Python, Ruby – strongly typed

6

Type Checking: Equivalence

§ Structural equivalence
§ same components put together in the same way
§ C, Algol-68, Modula-3, ML

§ Name equivalence
§ lexical occurrence
§ each definition is a new type
§ Java, C#, Pascal

7

Type Checking: Equivalence

§ Structural equivalence:
§ format should not matter

type R1 = record type R1 = record
a, b : integer a : integer;

end; b : integer;
end;

§ What about order? (most languages consider it equivalent)

type R3 = record
b : integer;
a : integer
end;

8

Type Checking: Equivalence

§ Structural equivalence: problem

type student = record
name, address : string
age : integer

type school = record
name, address : string
age : integer

x : student;
y : school;
…
x := y; -- is this an error?

§ compiler says it’s okay
§ programmer most likely says it’s an error

9

Type Checking: Equivalence

§ Name equivalence
§ Distinct definitions mean distinct types
§ If the programmer takes the time to write two type

definitions, then they are different types
§ Aliases

type new_type = old_type (* Algol syntax *)
typedef old_type new_type /* C syntax */

§ Are aliases the same or different types?
§ Different: strict name equivalence
§ Same: loose name equivalence

10

Type Checking: Equivalence

§ Strict name equiv.:
§ blink different from alink
§ p,q – same type; r,u – same type

§ Loose name equiv.:
§ blink, alink – same type
§ p,q – same type; r,s,u – same type

§ Structural equiv.:
§ p,q,r,s,t,u – same type

type cell = ... -- whatever
type alink = pointer to cell
type blink = alink -- alias
p, q : pointer to cell
r : alink
s : blink
t : pointer to cell
u : alink

11

Type Checking: Conversion

§ Type conversion (cast): explicit conversion
r = (float) n;

§ Type coercion: implicit conversion
§ very useful
§ weakens type security
§ dynamically typed languages: very important
§ statically typed languages: wide variety

§ C: arrays and pointers intermixed
§ C++: programmer-defined coercion to and from existing

types to a new type (class)

12

Type Checking: Compatibility

§ Type compatibility
§ more important than equivalence
§ most of the time we need compatibility
§ assignment: RHS compatible with LHS
§ operation: operands types compatible with a common type

that supports the operation
§ subroutine call: arguments types compatible with formal

parameters types

13

Type Checking: Inference

§ Type inference
§ infer expression type from components
§ int + int => int
§ float + float => float
§ subranges cause complications

type Atype = 0..20; Btype = 10..20;
var a : Atype; b : Btype;
§ What is the type of a + b ?

14

Type Checking: Inference

§ Type inference
§ declarations: type inferred from the context

§ C#: var
var i = 123;
// equiv. to:
int i = 123;

var map = new Dictionary<string, int>();
// equiv. to:
Dictionary<string, int> map = new
Dictionary<string, int>();

15

Type Checking: Inference

§ C++: auto
auto reduce = [](list<int> L, int f(int, int), int s) {

for (auto e : L) { s = f(e, s); }
return s;
};

...
int sum = reduce(my_list, [](int a,int b){return a+b;}, 0);
int prod = reduce(my_list, [](int a,int b){return a+b;}, 1);

§ the auto keyword allows to omit the type:

int (*reduce) (list<int>, int (*)(int, int), int)
= [](list<int> L, int f(int, int), int s) {

for (auto e : L) { s = f(e, s); }
return s;
};

16

Type Checking: Inference

§ C++: decltype
§ match the type of an existing expression
§ the type of sum depends on the types of A and B under the

coercion rules of C++
§ both int gives int
§ one is double gives double

template <typename A, typename B>
...

A a;
B b;
decltype(a + b) sum;

17

Polymorphism

§ Polymorphism (polymorphous = multiform)
§ code works with multiple types

§ must have common characteristics
§ parametric polymorphism: take a type as parameter

§ explicit parametric polymorphism (generics, C++: templates)
appears in statically typed languages

§ implemented at compile time
§ subtype polymorphism: code works with subtypes

§ object-oriented languages
§ combination (subtype + parametric polymorphism)

§ container classes
§ List<T>, Stack<T>; T instantiated later

18

Polymorphism

§ Implicit:
§ Scheme:
(define min (lambda (a b) (if (< a b) a b)))

§ applied to arguments of any type to which it can be applied
§ disadvantage: checked dynamically

§ Explicit: generics
§ C++: templates
§ checked statically

§ Generics in object-oriented programming
§ parametrize entire class
§ container

19

Polymorphism

§ Ada example: overloading (left) vs generics (right)

20

§ C++
example

21

Arrays

§ Arrays
§ the most important composite data type
§ semantically, map: index type → element type

§ Homogenous data
§ Index type

§ usually discrete type: int, char, enum, subranges of those
§ non-discrete type: associative array, dictionary, map

§ implemented using hash tables or search trees

§ Dense – most positions non-zero
§ sparse arrays – stored using linked structures

22

Arrays

§ Slices

23

Arrays: Dimensions, Bounds, Allocation

§ Static allocation:
§ array with lifetime the entire program
§ shape known at compile time

§ Stack allocation:
§ array with lifetime inside subroutine
§ shape known at compile time

§ Heap / stack allocation
§ dynamically allocated arrays
§ dope vector: holds shape information at run time
§ compiled languages need the number of dimensions
§ shape known at elaboration time – can allocate on stack
§ shape changes during execution: allocated on heap

24

Arrays

§ Example: C dynamic local array
void square(int n, double M[n][n]) {

double T[n][n];
for (int i = 0; i < n; i++) { // copy product to T

for (int j = 0; j < n; j++) {
double s = 0;
for (int k = 0; k < n; k++)

s += M[i][k] * M[k][j];
T[i][j] = s;

}
}
for (int i = 0; i < n; i++) {// copy T back to M

for (int j = 0; j < n; j++)
M[i][j] = T[i][j];

}
}

25

Arrays

26

§ Shape known at
elaboration time

§ can be allocated on stack
§ in the variable-size part

§ Example:

// C99:
void foo (int size) {

double M[size][size];
...

}

Arrays

§ Memory layout
§ column major order – Fortran
§ row major order – everybody else

27

Arrays

§ Memory layout
§ Contiguous allocation

§ consecutive locations in memory: A[2,4], A[2,5]
§ consecutive rows adjacent in memory

§ Row pointers
§ consecutive rows anywhere in memory
§ extra memory for pointers
§ rows can have different lengths (ragged array)
§ can construct an array from existing rows without copying

§ C, C++, C# - allow both
§ Java – only row-pointer for all arrays

28

Arrays

§ Example: C –
array of strings
§ true two-

dimensional
array

29

Arrays

§ Example: C –
array of strings

§ array of
pointers

30

Arrays

§ Address calculation
A : array [L1..U1] of array [L2..U2] of array

[L3..U3] of elem_type;

S3 = size of elem_type
S2 = (U3 − L3 + 1) × S3

S1 = (U2 − L2 + 1) × S2

address of A[i,j,k]
= address of A

+ (i – L1) × S1
+ (j – L2) × S2
+ (k – L3) × S3

31

Arrays

§ Faster address calculation

address of A[i,j,k]
= address of A + (i – L1) × S1 + (j – L2) × S2 + (k – L3) × S3

§ Fewer operations
§ C = [(L1 × S1) + (L2 × S2) + (L3 × S3)]
§ C – known at compile time

address of A[i,j,k]
= address of A + (i × S1) + (j × S2) + (k × S3) − C

32

Sets

§ Set: unordered collection of an arbitrary number of distinct
values of a common type

§ Implementation
§ characteristic array – one bit for each value (small base type)

§ efficient operations – bitwise op
§ general implementation: hash tables, trees, etc.
§ Python, Swift – built-in sets
§ Others use dictionaries, hashes, maps

X = set(['a', 'b', 'c', 'd']) # set constructor
Y = {'c', 'd', 'e', ‘f’} # set literal
U = X | Y # union
I = X & Y # intersection
D = X - Y # difference
O = X ^ Y # symmetric diff.
'c' in I # membership

33

Pointers and Recursive Types

§ Pointer
§ a variable whose value is a reference to some object
§ not needed with a reference model of variables
§ needed with a value model of variables
§ efficient access to complicated objects

§ Recursive type
§ objects contain references to other objects
§ can create dynamic data structures

§ Pointer ≠ address
§ pointer = high-level concept; reference to object
§ address = low-level concept; location in memory
§ pointers are implemented as addresses

34

Pointers and Recursive Types

§ Reference model example: Tree in Scheme
§ Two types of objects: (1) cons cells (2) atoms
'(#\R (#\X ()()) (#\Y (#\Z ()()) (#\W ()())))

35

Pointers and Recursive Types
§ Value model example: Tree in C
struct chr_tree {

struct chr_tree *left, *right;
char val;

};
my_ptr = malloc(sizeof(struct chr_tree));

§ C++, Java, C# – type safe
my_ptr = new chr_tree(arg_list);

(*my_ptr).val = ‘X’;
my_ptr->val = ‘X’;

36

Pointers and Recursive Types

§ Dangling reference
§ live pointer that no longer points to a valid object
§ Example: caused by local variable after subroutine return:

int i = 3;
int *p = &i;
...
void foo(){ int n = 5; p = &n; }
...
cout << *p; // prints 3
foo();
...
cout << *p; // undefined behavior: n is no

longer live

37

Pointers and Recursive Types

§ Dangling reference
§ Example: caused by manual deallocation:

int *p = new int;
*p = 3;
...
cout << *p; // prints 3
delete p;
...
cout << *p; // undefined behavior: *p has been

reclaimed

§ Problem: a dangling reference can write to memory that is
part of a different object; it may even interfere with
bookkeeping, corrupting the stack or heap

38

Garbage collection

§ Garbage collection
§ automatic reclamation of memory
§ slower than manual (delete)
§ difficult to implement
§ eliminates the need to check for dangling references
§ very convenient for programmers
§ essential for functional languages
§ increasingly popular in imperative languages

§ Java, C#

39

Garbage collection

§ Reference counts
§ object no longer useful when no pointers to it exist
§ store reference count for each object

§ initially set to 1
§ update when assigning pointers
§ update on subroutine return
§ when 0, reclaim object

40

Garbage collection

§ Reference counts
§ count ≠ 0 does not necessarily mean useful (circular lists)

41

Garbage collection

§ Smart pointers in C++
§ unique_ptr

§ one object only
§ shared_ptr

§ implements a reference count
§ weak_ptr

§ does not affect counts; for, e.g., circular structures

42

Garbage collection

§ Tracing collection
§ object useful if reachable via chain of valid pointers from

outside the heap
§ Mark-and-sweep

(1) mark entire heap as “useless”
(2) staring from outside heap, recursively mark as “useful”
(3) move “useless” block from heap to free list

§ Step (2) requires a potentially very large stack
§ Without stack: pointer reversal (next slide)

§ Stop-and-copy: defragmentation
§ use half of heap; copy useful data compactly to the other one

43

44

Pointer reversal

Lists

§ List: empty or (head + tail)
§ essential in functional and logic programming (recursive)
§ used also in imperative languages
§ Homogeneous (same type): ML
§ Heterogeneous: Scheme

45

a b c

C

A a

C

A b

C

A c

Lists

§ Scheme:
§ '(...) prevents evaluation; also (quote (...))

(+ 1 2) ⟹ 3
'(+ 1 2) ⟹ '(+ 1 2)

(cons 'a '(b)) ⟹ '(a b)
(car '(a b)) ⟹ a
(car '()) ⟹ error
(cdr '(a b c)) ⟹ '(b c)
(cdr '(a)) ⟹ '()
(cdr '()) ⟹ error
(append '(a b) '(c d)) ⟹ '(a b c d)

46

Lists

§ List comprehension
§ adapted from traditional math set notation:

{i × i | i ∈ {1, . . . , 10} ∧ i mod 2 = 1}

§ Example: Python

[i*i for i in range(1, 10) if i % 2 == 1]

⟹ [1, 9, 25, 49, 81]

47

Object-Oriented
Programming

Chapter 10

Object-Oriented Programming

§ Key elements:
§ Data hiding / Encapsulation
§ Inheritance
§ Dynamic method binding

Data hiding

§ Data abstraction: control large software complexity
§ Data hiding:

§ objects visible only where necessary
§ reduce cognitive load on programmer
§ global variables – no hiding
§ local variables – subroutines only but limited life
§ static variables – retained between invocations
§ modules as abstractions – encapsulation

§ subroutines, variables, types, etc. visible only inside module
§ export / import types
§ Java: package, C++: namespace

§ modules as types: the module is the type

Classes

§ Class:
§ module as type
§ + inheritance
§ + dynamic method binding

§ Object
§ instance of a class
§ object-oriented programming

Classes: Example

Classes: Example (cont’d)

Classes: Example (cont’d)

§ create an empty list:
list* my_list_ptr = new list

Classes

§ Data members – fields:
§ prev, next, head_node, val

§ Subroutine members – methods:
§ predecessor, successor, insert_before,
remove

§ Accessing current object:
§ this (C++), self (Objective-C), current (Eiffel)

§ Object creation / destruction:
§ constructors: list_node() (same name as the class)
§ destructors (C++): ~list_node()

Visibility

§ public: visible to users
§ private: invisible to users
§ C++: what is not public is private

Inheritance

§ Derived class – inherits base class’s fields and methods
class queue : public list { // queue derived from list
public:

// no specialized constructor/destructor required
void enqueue(int v) {

append(new list_node(v)); // append inherited
}[

int dequeue()
if (empty())

throw new list_err(“dequeue from empty queue”);
list_node* p = head(); // head inherited
p->remove();
int v = p->val;
delete p;
return v;

}
};

Inheritance

§ queue: derived class, child class, subclass
§ list: base class, parent class, superclass
§ public members of the base class are always visible to

methods of the derived class
§ public members of the base class are visible to users only if

the class is publicly derived
§ we can hide public members by private derivation

§ exceptions made with using

class queue : private list { ...
public:

using list::empty;

Inheritance

§ the opposite is also possible with delete:

class queue : public list { ...
...
void append(list_node *new_node) = delete;

§ C++ protected
§ visible to members of its class and classes derived from it

class derived : protected base { ...

Visibility – C++ rules

§ Any class can limit visibility of its members:

§ A derived class can restrict visibility of base class
members but can never increase it:

§ Exceptions: using, delete

member class’s
methods

class’s and descendant’s
methods

anywhere
(class scope)

public ✓ ✓ ✓
protected ✓ ✓ ✕
private ✓ ✕ ✕

member \ derived class public protected private

public public protected private

protected protected protected private

private private private private

Visibility

§ Java, C#
§ private, protected, public
§ no protected or private derivation
§ derived class can neither increase nor restrict visibility
§ can hide a field or override a method by defining a new

one with the same name
§ cannot be more restrictive than the base class version

§ Java protected: visible in the entire package

§ static fields and methods
§ orthogonal to the visibility by public/protected/private
§ belong to the class as a whole: class fields and methods

Generics

§ Previous list has integers only
§ Generics allow list of any type

§ C++: templates

template<typename V>
class list_node {

list_node<V>* prev;
list_node<V>* next;
list_node<V>* head_node;

public:
V val;
list_node<V>* predecessor() { ...
list_node<V>* successor() { ...
void insert_before(list_node<V>* new_node) { ...
...

};

Generics
template<typename V>
class list {

list_node<V> header;
public:

list_node<V>* head() { ...
void append(list_node<V> *new_node) { ...
...

};

template<typename V>
class queue : private list<V> {

list_node<V> header;
public:

using list<V>::empty;
void enqueue(const V v) { ...
V dequeue() { ...
V head() { ...

};

Generics
typedef list_node<int> int_list_node;
typedef list_node<string> string_list_node;
typedef list<int> int_list;
...
int_list_node n(3);
string_list_node s(“boo!”);
int_list L;
L.append(&n); // ok
L.append(&s); // error

Initialization and Finalization

§ Initialize – Constructor
§ Choosing a constructor

§ Can specify several constructors – C++, Java, C#
§ overloading: differentiate by number and types of

parameters

class list_node {
...
list_node(int v) {

prev = next = head_node = this;
val = v;

}
...
list_node element1(1); // int val
list_node *e_ptr = new list_node(5) // heap
list_node element0(); // default; val=0

Initialization and Finalization

§ References and Values
§ Python, Java: variables refer to objects

§ every object is created explicitly
§ C++: variable has an object as value

§ objects created explicitly or implicitly, as result of elaboration
§ C++ requires all objects initialized by constructors

foo b; // calls 0-arg constructor foo::foo()
foo b(10, ‘x’); // calls foo::foo(int, char)

foo a;
foo b(a); // calls copy constructor foo::foo(foo&)
foo b = a; // same thing (‘=‘ is not assignment)

foo a, b; // calls foo::foo() twice
b = a; // assignment; calls foo::operator=(foo&)

Initialization and Finalization

§ Execution order for constructors (C++)
§ base class constructor executed first
§ also constructors of member classes
§ can specify arguments in constructor’s header

class foo : bar {
mem1_t member1; // mem1_t and
mem2_t member2; // mem2_t are classes
...

}
foo::foo (foo_param) : bar (bar_args),

member1 (mem1_init_val), member2 (mem2_init_val) {
...

Initialization and Finalization
§ Finalize – Destructor

§ destructor of derived class called first, then base
§ C++: used for storage reclamation (manual storage)
§ Example: queue derived from list

§ default destructor calls ~list (throws exception if non-empty)
§ If we wish destruction of non-empty queue:

~queue() {
while (!empty()) {

list_node* p = contents.head();
p->remove();
delete p;

}
} // or
~queue() {

while (!empty()) {
int v = dequeue();

}
}

Dynamic Method Binding

§ Subtype
§ Class D derived from C such that D doesn’t hide any

publicly visible member of C
§ a D-object can be used anywhere a C-object is expected
§ derived class is a subtype of base class

class person { ...
class student : public person { ...
class professor : public person { ...
...
student s;
professor p;
...
person *x = &s;
person *y = &p;

Dynamic Method Binding

§ Polymorphic subroutine

class person { ...
void person::print_label { ...
...
s.print_label(); // print_label(s)
p.print_label(); // print_label(p)

§ What if we redefine print_label in the derived classes?

s.print_label(); // student::print_label(s)
p.print_label(); // professor::print_label(p)

Dynamic Method Binding

§ What about this?

x->print_label(); // ??
y->print_label(); // ??

§ Static method binding: use the types of the variables x and y

§ Dynamic method binding: use the classes of objects s and p
to which the variables refer

§ Example:
§ list of students and professors
§ print label correctly for each – dynamic method binding
§ derived class definition overrides the base class definition

Dynamic Method Binding

§ Dynamic method binding
§ run-time overhead
§ Python, Objective-C, Ruby, Smalltalk – all methods
§ Java, Eiffel – dynamic default

§ final (Java) or frozen (Eiffel) cannot be overridden
§ C++, C#, Ada95, Simula – static default

§ static: redefining method
§ dynamic: overriding method – virtual

class person {
public:

virtual void print_label();
...

Dynamic Method Binding

§ Abstract classes
§ may omit the body of virtual functions – abstract method
abstract class person { // Java, C#

...
public abstract void print_label();
...

class person { // C++
...

public:
virtual void print_label() = 0;
...

§ C++ – abstract method is called pure virtual method
§ Abstract class – has at least one abstract method

§ base for concrete classes
§ Interface – Java, C#

§ classes with abstract methods only

Dynamic member lookup

§ Static method binding
§ the compiler knows which version of the method to call

§ Dynamic method binding
§ reference variable must contain sufficient information for

the code generated by compiler to find version at run time
§ Virtual method table (vtable)

§ object implemented as a record whose first field contains
the address of the vtable for the object’s class

§ ith entry of the vtable is the address of the code for the
object’s ith virtual method

Dynamic member lookup

§ Example

Dynamic member lookup

§ Dynamic method binding run-time overhead
§ Example – code to call f->m():

§ f is a pointer to an object of class foo
§ m is the third method of class foo

r1 := f
r2 := *r1 // vtable address
r2 := *(r2+(3–1)×4) // 4 = sizeof(address)
call *r2

§ this is two instructions longer than a call to statically
identified method

Dynamic member lookup

§ Inheritance

Dynamic member lookup

§ Example:

class foo { ...
class bar : public foo { ...
...
foo F;
bar B;
foo* q;
bar* s;
...
q = &B; // ok; uses a prefix of B’s vtable
s = &F; // static semantic error
s = dynamic_cast<bar*>(q); // run-time check
s = (bar*)(q); // permitted but risky

// no run-time check

λ-calculus

Chapter 11.7

What can be done by a computer?

§ Algorithm formalization – 1930s
§ Church, Turing, Kleene, Post, etc.
§ Church’s thesis:

All intuitive computing models are equally powerful.
§ Turing machine

§ automaton with an unbounded tape
§ imperative programming

§ Church’s λ-calculus
§ computes by substituting parameters into expressions
§ functional programming

§ Logic: Horn clauses
§ collection of axioms to solve a goal
§ logic programming

2

λ-calculus

§ λ-calculus
§ Church (1941) – to study computations with functions
§ Everything is a function!

§ λ-expressions – defined recursively:
§ name: x, y, z, u, v, …
§ abstraction: λx.M

§ function with parameter x and body M
§ applications: M N – function M applied to N

§ Examples
§ (λ x.x*x) - a function that maps x to x*x
§ (λ x.x*x) 4 - the same function applied to 4

3

λ-calculus

§ Syntactic rules
§ application is left-associative

x y z means (x y) z
§ application has higher precedence than abstraction

λx.A B means λx.(A B) (not (λx.A) B)
§ consecutive abstractions:

λx1x2…xn.e means λx1.(λx2.(…(λxn.e)…))

§ Example:
λxyz.x z (y z) = (λx.(λy.(λz.((x z) (y z)))))

4

λ-calculus

§ Context-free grammars (CFG)

§ CFG for λ-expressions
expr → name | (λ name . expr) | (expr expr)

§ CFG for λ-expressions with minimum parentheses
expr → name | λ name . expr | func arg
func → name | (λ name . expr) | func arg
arg → name | (λ name . expr) | (func arg)

5

λ-calculus

§ Examples

square = λx.times x x
identity = λx.x
const7 = λx.7
hypot = λx.λy.sqrt (plus (square x) (square y))

6

Free and bound variables

§ λx.M - is a binding of the variable (or name) x
§ lexical scope
§ x is said to be bound in λx.M
§ all x in λx.M are bound within the scope of this binding

§ x is free in M if it is not bound
§ free(M) - the set of free variables in M

§ free(x) = {x}
§ free(M N) = free(M) ∪ free(N)
§ free(λx.M) = free(M) − {x}

§ bound(M) - the set of variables which are not free
§ any occurrence of a variable is free or bound; not both

7

Free and bound variables

§ Example
§ x is free
§ y, z are bound

λy.λz.x z (y z)

8

Computing with pure λ-terms

§ Computing idea:
§ reduce the terms into as simple a form as possible
§ (λx.M) N =β {N/x}M – substitute N for x in M
§ the right-hand side is expected to be simpler

§ Example:
(λxy.x) u v =β (λy.u) v =β u

9

Substitution

§ {N/x}M – substitution of term N for variable x in M
§ Substitution rules (informal):

§ (i) if free(N) ∩ bound(M) = ∅
then just replace all free occurrences of x in M

§ (ii) otherwise, rename with fresh variables until (i) applies

10

Substitution rules

§ In variables: the same or different variable
§ {N/x}x = N
§ {N/x}y = y, y ≠ x

§ In applications – the substitution distributes
§ {N/x}(P Q) = {N/x}P {N/x}Q

§ In abstractions – several cases
§ no free x:

{N/x}(λx.P) = λx.P
§ no interaction – y is not free in N:

{N/x}(λy.P) = λy.{N/x}P, y ≠ x, y ∉ free(N)
§ renaming – y is free in N; y is renamed to z in P:

{N/x}(λy.P) = λz.{N/x}{z/y}P,
y ≠ x, y ∈ free(N), z ∉ free(N) ∪ free(P)

11

Computing with pure λ-terms

§ Rewriting rules
§ α-conversion – renaming the formal parameters

λx.M ⟹α λy.{y/x}M, y ∉ free(M)

§ β-reduction – applying an abstraction to an argument
(λx.M) N ⟹β {N/x} M

12

Equality of pure λ-terms

§ Example
(λxyz.x z (y z)) (λx.x) (λx.x)
⟹α (λxyz.x z (y z)) (λu.u) (λx.x)
⟹α (λxyz.x z (y z)) (λu.u) (λv.v)
⟹β (λyz.(λu.u) z (y z)) (λv.v)
⟹β (λyz.z (y z)) (λv.v)
⟹β λz.z ((λv.v) z)
⟹β λz.z z

13

Equality of pure λ-terms

§ Example
(λfgh.f g (h h)) (λxy.x) h (λx.x x)
⟹β (λgh.(λxy.x) g (h h)) h (λx.x x)
⟹α (λgk.(λxy.x) g (k k)) h (λx.x x)
⟹β (λk.(λxy.x) h (k k)) (λx.x x)
⟹β (λxy.x) h ((λx.x x) (λx.x x))
⟹β (λy.h) ((λx.x x) (λx.x x))
⟹β h

14

Computing with pure λ-terms

§ Rewriting rules
§ Reduction: any sequence of ⟹α , ⟹β

§ Normal form: term that cannot be β-reduced
§ β-normal form
§ Example of normal form

λx.x x – cannot be reduced

15

Computing with pure λ-terms

§ There may be several ways to reduce to a normal form
§ Example: any path below is such a reduction

(λxyz.x z (y z)) (λx.x) (λx.x)

(λyz.(λx.x) z (y z)) (λx.x)

(λyz.z (y z)) (λx.x) λz.(λx.x) z ((λx.x) z)

λz.z ((λx.x) z) λz.(λx.x) z z

λz.z z

⟹
β

⟹
β

⟹
β

⟹
β

⟹
β

⟹
β⟹

β

⟹
β

16

Computing with pure λ-terms

§ Nonterminating reductions
§ Never reach a normal form
§ Example

(λx.x x) (λx.x x) ⟹β (λx.x x) (λx.x x)

17

Computing with pure λ-terms

§ Theorem (Church-Roser, 1936)
For all pure λ-terms M, P, Q, if

M ⟹β
* P and M ⟹β

*Q,
then there exists a term R such that

P ⟹β
* R and Q ⟹β

* R.

§ In particular, the normal form, when exists, is unique.

18

Computing with pure λ-terms

§ Reduction strategies
§ Call-by-value reduction (applicative order)

§ parameters are evaluated first, then passed
§ might not reach a normal form even if there is one
§ leftmost innermost lambda that can be applied

§ Example
(λy.h) ((λx.x x) (λx.x x))

⟹β (λy.h) ((λx.x x) (λx.x x))
⟹β (λy.h) ((λx.x x) (λx.x x))
⟹β ...

19

Computing with pure λ-terms

§ Reduction strategies
§ Call-by-name reduction (normal order)

§ parameters are passed unevaluated
§ leftmost outermost lambda that can be applied

§ Example
(λy.h) ((λx.x x) (λx.x x)) ⟹β h

§ Theorem (Church-Roser, 1936)
Normal order reduction reaches a normal form if there is one.

§ Functional languages use also call-by-value because it can be
implemented efficiently and it might reach the normal form
faster than call-by-name.

20

λ-calculus can model everything

§ Boolean values
§ True: T ≡ λx.λy.x

§ interpretation: of a pair of values, choose the first
§ False: F ≡ λx.λy.y

§ interpretation: of a pair of values, choose the second

§ Properties:

((T P) Q) ⟹β (((λx.λy.x) P) Q) ⟹β ((λy.P) Q) ⟹β P
((F P) Q) ⟹β (((λx.λy.y) P) Q) ⟹β ((λy.y) Q) ⟹β Q

21

λ-calculus can model everything

§ Boolean functions
§ not ≡ λx.((x F) T)
§ and ≡ λx.λy.((x y) F)
§ or ≡ λx.λy.((x T) y)

§ Interpretation is consistent with predicate logic:
not T⟹β (λx.((x F) T)) T⟹β ((T F) T) ⟹β F
not F⟹β (λx.((x F) T)) F⟹β ((F F) T) ⟹β T

22

λ-calculus can model everything

§ Integers
0 ≡ λf.λc.c
1 ≡ λf.λc.(f c)
2 ≡ λf.λc.(f (f c))
3 ≡ λf.λc.(f (f (f c)))
…
N ≡ λf.λc.(f (f ...(f c))...)

§ Interpretation:
§ c is the zero element
§ f is the successor function

{N

23

λ-calculus can model everything

§ Integers (cont’d)
§ Example calculations:

(N a) = (λf.λc.(f ...(f c))...)) a ⟹β λc.(a...(a c)...)

((N a) b) = (a (a...(a b))...)
{N {N

{N

24

λ-calculus can model everything

§ Integer operations
§ Addition: + ≡ λM.λN.λa.λb.((M a)((N a) b))

[M + N] = λa.λb.((M a) ((N a) b)) ⟹β
* λa.λb.(a (a...(a b))...)

§ Multiplication: × ≡ λM.λN.λa.(M (N a))
[M × N] = λa.(M (N a)) ⟹β

* λa.λb.(a (a...(a b))...)

§ Exponentiation: ∧ ≡ λM.λN.(N M)
[MN] = (N M) ⟹β

* λa.λb.(a (a...(a b))...)

§ This way we can develop all computable math. functions.

{M+N

{M×N

{MN
25

λ-calculus can model everything

§ Control flow
§ if ≡ λc.λt.λe.c t e

§ Interpretation: c = condition, t = then, e = else

§ if T 3 4 = (λc.λt.λe.c t e)(λx.λy.x) 3 4
⟹β

* (λt.λe.t) 3 4
⟹β

* 3

§ if F 3 4 = (λc.λt.λe.c t e)(λx.λy.y) 3 4
⟹β

* (λt.λe.e) 3 4
⟹β

* 4

26

λ-calculus can model everything

§ Recursion
§ gcd = λa.λb.(if (equal a b) a (if (greater a b) (gcd (minus

a b) b) (gcd (minus b a) a)))
§ This is not a definition because gcd appears in both sides

§ If we substitute this, the definition only gets bigger
§ To obtain a real definition, we rewrite using β-abstraction:

gcd = (λg.λa.λb.(if (equal a b) a (if (greater a b) (g
(minus a b) b) (g (minus b a) a)))) gcd

§ we obtain the equation
gcd = f gcd, where
f = λg.λa.λb.(if (equal a b) a (if (greater a b) (g (minus a
b) b) (g (minus b a) a)))

§ gcd is a fixed point of f

27

λ-calculus can model everything

§ Define the fixed point combinator:
Y ≡ λh.(λx.h (x x)) (λx.h (x x))

§ Y f is a fixed point of f
§ if the normal order evaluation of Y f terminates then f (Y f)

and Y f will reduce to the same normal form
§ We get then a good definition for gcd:
gcd ≡ Y f = (λh.(λx.h (x x)) (λx.h (x x))) (λg.λa.λb.(if (equal a
b) a (if (greater a b) (g (minus a b) b) (g (minus b a) a))))

28

λ-calculus can model everything

§ Example
gcd 2 4
≡ Y f 2 4
≡ ((λh.(λx.h (x x)) (λx.h (x x))) f) 2 4
⟹β ((λx.f (x x)) (λx.f (x x))) 2 4

≡ (f ((λx.f (x x)) (λx.f (x x)))) 2 4 denote k ≡ λx.f (x x)
⟹β (f (k k)) 2 4
≡ ((λg.λa.λb.(if (= a b) a (if (> a b) (g (− a b) b) (g (− b a) a))))(k k)) 2 4
⟹β (λa.λb.(if (= a b) a (if (> a b) ((k k) (− a b) b) ((k k)(− b a) a)))) 2 4
⟹β

* if (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))
≡ (λc.λt.λe.c t e) (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

29

λ-calculus can model everything

≡ (λc.λt.λe.c t e) (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))
⟹β

* (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))
⟹δ F 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))
≡ (λx.λy.y) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))
⟹β

* if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2)
⟹β ...
⟹β (k k) (− 4 2) 2
≡ ((λx.f (x x)) k) (− 4 2) 2
⟹β (f (k k))(− 4 2) 2
≡ ((λg.λa.λb.(if (= a b) a (if (> a b) (g (− a b) b) (g (− b a) a)))) (k k))(− 4 2) 2
⟹β (λa.λb.(if (= a b) a (if (> a b) ((k k) (− a b) b) ((k k) (− b a) a))))(− 4 2) 2

30

λ-calculus can model everything
⟹β (λa.λb.(if (= a b) a (if (> a b) ((k k) (− a b) b) ((k k) (− b a) a))))(− 4 2) 2
⟹β

* if (= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2
(− 4 2)) (− 4 2)))
≡ (λc.λt.λe.c t e) (= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k
k) (− 2 (− 4 2)) (− 4 2)))
⟹β

* (= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4
2)) (− 4 2)))
⟹δ (= 2 2)(− 4 2) (if (> (− 4 2) 2) ((k k)(− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4
2)))
⟹δ T (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))
≡ (λx.λy.x) (− 4 2) (if (> (− 4 2) 2) ((k k)(− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4
2)))
⟹β

* (− 4 2)
⟹δ 2

31

λ-calculus can model everything

§ Structures
§ select_first ≡ λx.λy.x
§ select_second ≡ λx.λy.y
§ cons ≡ λa.λd.λx.x a d
§ car ≡ λl.l select_first
§ cdr ≡ λl.l select_second
§ null? ≡ λl.l (λx.λy.F)

32

λ-calculus can model everything

car (cons A B)
≡ (λl.l select_first) (cons A B)
⟹β (cons A B) select_first
≡ ((λa.λd.λx.x a d) A B) select_first
⟹β

* (λx.x A B) select_first
⟹β select_first A B
≡ (λx.λy.x) A B
⟹β

* A

33

λ-calculus can model everything

cdr (cons A B)
≡ (λl.l select_second) (cons A B)
⟹β (cons A B) select_second
≡ ((λa.λd.λx.x a d) A B) select_second
⟹β

* (λx.x A B) select_second
⟹β select_second A B
≡ (λx.λy.x) A B
⟹β

* B

34

λ-calculus can model everything

null? (cons A B)
≡ (λl.l (λx.λy.select_second)) (cons A B)
⟹β (cons A B) (λx.λy.select_second)
≡ ((λa.λd.λx.x a d) A B) (λx.λy.select_second)
⟹β

* (λx.x A B) (λx.λy.select_second)
⟹β (λx.λy.select_second) A B
⟹β

* select_second

≡ F

35

Functional
Programming

Chapter 11

Functional Programming

§ No side effects
§ output of a program is a mathematical function of the inputs
§ no internal state, no side effects

§ Recursion and composition
§ effects achieved by applying functions: recursion, composition

§ First-class functions:
§ can be passed as a parameter
§ can be returned from a subroutine
§ can be assigned in a variable
§ (more strictly) can be computed at run time

2

Functional Programming

§ Polymorphism
§ Functions can be applied to general class of arguments

§ Lists
§ Natural recursive definition
§ List = head + tail (list)

§ Homogeneity
§ program is a list – can be manipulated the same as data

§ Garbage collection
§ heap allocation for dynamically allocated data
§ unlimited extent

3

Functional vs Imperative

§ Advantages
§ No side effects

§ predictable behavior
§ Referential transparency

§ Expressions are independent of evaluation order
§ Equational reasoning

§ Expressions equivalent at some point in time are equivalent at
any point in time

4

Functional vs Imperative

§ Disadvantages
§ Trivial update problem

§ Every result is a new object instead of a modification of an
existing one

§ Data structures different from lists more difficult to handle
§ multidimensional arrays
§ dictionaries
§ in-place mutation

§ The trivial update problem is not an inherent weakness of
functional programming

§ The implementation could detect whether an old version of a
structure will never be used again and update in place

5

Scheme

§ Originally developed in 1975
§ Initially very small
§ Now is a complete general-purpose language
§ Still derived from a smalls set of key concepts

§ Lexically scoped
§ Functions are first class values
§ Implicit storage management

6

Scheme vs λ-calculus

§ Scheme syntax very similar with λ-calculus

§ Examples:
§ λ-calculus

λx.x
(λx.x * x) 4 ⟹β 16

§ Scheme
(lambda (x) x)

((lambda (x) (* x x)) 4) ⟹ 16

7

Scheme: Interpreter

§ Interacting with the interpreter
"hello" ⇒ "hello”

42 ⇒ 42

22/7 ⇒ 3 1/7
3.1415 ⇒ 3.1415

+ ⇒ #<procedure:+>

(+ 5 3) ⇒ 8

'(+ 5 3) ⇒ (+ 5 3)

'(a b c d) ⇒ '(a b c d)

'(2 3) ⇒ '(2 3)

(2 3) ⇒ error; 2 is not procedure

8

Scheme: Elements

§ Identifiers
§ cannot start with a character that may start a number:

digit, +, -, .
§ case is important

§ Numbers: integers: -1234; ratios: 1/2; floating-point: 1.3,
1e23; complex numbers: 1.3 - 2.7i

§ List constants: '(a b c d)
§ Empty list: '()
§ Procedure applications: (+ (* 3 5) 12)
§ Boolean values: #t (true), #f (false)

§ Any object different from #f is true

9

Scheme: Elements

§ Vectors
#(this is a vector of symbols)

§ Strings
"this is a string”

§ Characters
#\a, #\b , #\c

§ Comments:
§ ; ... end_of_line
§ #| ... |#

10

Scheme: Functions

§ Variable definitions
(define a 23) a ⇒ 23

§ Function applications
(+ 20 10) ⇒ 30

(+ 1/4 6/3) ⇒ 9/4

(* (* 2/5 5/6) 3) ⇒ 1

11

Scheme: Functions

§ Defining a function
(define (square x) (* x x))

(square 5) ⇒ 25

§ Anonymous functions
(lambda (x) (* x x))

((lambda (x) (* x x)) 5) ⇒ 25

§ Named functions
(define square (lambda (x) (* x x)))

(square 5) ⇒ 25

12

Scheme: Quoting

§ (quote obj) or
§ ’obj

§ tells Scheme not to evaluate
(quote (1 2 3 4 5)) ⇒ (1 2 3 4 5)
(quote (+ 3 4)) ⇒ (+ 3 4)
(quote +) ⇒ +
+ ⇒ #<procedure:+>
’(1 2 3 4 5) ⇒ (1 2 3 4 5)
’(+ (* 3 10) 4) ⇒ (+ (* 3 10) 4)
’2 ⇒ 2 ; unnecessary
2 ⇒ 2
’"hi" ⇒ "hi ; unnecessary
"hi" ⇒ "hi"

13

Scheme: Lists

§ (car list)
§ gives the first element

§ (cdr list)
§ gives the list without the first element
(car ’(a b c)) ⇒ a

(cdr ’(a b c)) ⇒ (b c)

(car (cdr ’(a b c))) ⇒ b

§ (cons list)
§ constructs a list from an element and a list
(cons ’a ’()) ⇒ (a)

(cons ’a (cons ’b (cons ’c ’()))) ⇒ (a b c)

(cons ’a ’b) ⇒ (a . b) ;improper list
14

Scheme: Lists

§ (list obj1 obj2 …)
§ constructs (proper) lists; arbitrarily many arguments
(list ’a ’b ’c) ⇒ (a b c)

(list) ⇒ ()

(list ’a ’(b c)) ⇒ (a (b c))

§ (null? list)
§ tests whether a list is empty
(null? ()) ⇒ #t

(null? ’(a)) ⇒ #f

15

Scheme: Variable binding

§ (let ((var val)…) exp1 exp2 …)
§ each var is bound to the value of the corresponding val
§ returns the value of the final expression
§ the body of let is the sequence exp1 exp2 …
§ each var is visible only within the body of let

§ no order is implied for the evaluation of the expressions val

16

Scheme: Variable binding

(let ((x 2)) ;let x be 2 in ...

(+ x 3)) ⇒ 5

(let ((x 2) (y 3))

(+ x y)) ⇒ 5

(let ((a (* 4 4)))

(+ a a)) ⇒ 32

(let ((f +) (x 2) (y 3))

(f x y)) ⇒ 5

(let ((+ *))

(+ 2 5)) ⇒ 10

(+ 2 5) ⇒ 7 ; + unchanged outside previous let

17

Scheme: Variable binding

(let ((x 1))

(let ((y (+ x 1))) ;nested lets

(+ y y))) ⇒ 4

(let ((x 1))

(let ((x (+ x 1))) ;new variable x

(+ x x))) ⇒ 4

18

Scheme: Variable binding

(let ((x1 1))

(let ((x2 (+ x1 1))) ; indices show bindings

(+ x2 x2))) ⇒ 4

(let ((x1 1) (y1 10))

(let ((x2 (+ y1 (* x1 1))))

(+ x2 (- (let ((x3 (+ x2 y1)) (y2 (* y1 y1)))

(- y2 x3)) y1)))) ⇒ 80

(let ((sum (lambda (ls)

(if (null? ls)

0

(+ (car ls) (sum (cdr ls)))))))

(sum '(1 2 3 4 5)))
19

Scheme: Variable binding

§ (let* ((var val)…) exp1 exp2 …)
§ similar with let
§ each val is within the scope of variables to its left
§ the expressions val are evaluated from left to right

(let* ((x 10) (y (- x 4)))

(* y y)) ⇒ 36

(let ((x 10) (y (- x 4)))

(* y y))

20

Scheme: Variable binding

§ (letrec ((var val)…) exp1 exp2 …)
§ each val is within the scope of all variables
§ no order is implied for the evaluation of the expressions val

(letrec ((sum (lambda (ls)
(if (null? ls)

0
(+ (car ls) (sum (cdr ls)))))))

(sum ’(1 2 3 4 5))) ⇒ 15

§ let – for independent variables
§ let* – linear dependency among variables
§ letrec – circular dependency among variables

21

Scheme: Variable binding

(letrec ((even? (lambda (x)
(or (= x 0)

(odd? (- x 1)))))
(odd? (lambda (x)

(and (not (= x 0))
(even? (- x 1))))))

(list (even? 132) (odd? 2))) ⇒ '(#t, #f)

22

Scheme: Functions

§ (lambda formals exp1 exp2 …)
§ returns a function

§ formals can be:
§ A proper list of variables (var1 ... varn)

§ then exactly n parameters must be supplied, and each variable
is bound to the corresponding parameter

((lambda (x y) (* x (+ x y))) 7 13) ⇒ 140

§ A single variable x (not in a list): then x is bound to a list
containing all actual parameters

((lambda x x) 1 2 3) ⇒ (1 2 3)

((lambda x (sum x)) 1 2 3 4) ⇒ 10

23

Scheme: Functions

§ An improper list terminated with a variable, (var1 ... varn .
var), then at least n parameters must be supplied and var1 ...
varn will be bound to the first n parameters and var will be
bound to a list containing the remaining parameters
((lambda (x y . z) (list x y z)) 1 2 3 4)

⇒ (1 2 (3 4))

24

Scheme: Assignments

§ (set! var exp)
§ assigns a new value to an existing variable
§ this is not a new name binding but new value binding to

an existing name

(let ((x 3) (y 4))
(set! x 10)

(+ x y)) ⇒ 14

25

Scheme: Assignments
(define quadratic-formula
(lambda (a b c)
(let ((root1 0) (root2 0) (minusb 0)

(radical 0) (divisor 0))
(set! minusb (- 0 b))
(set! radical (sqrt (- (* b b) (* 4 (* a c)))))
(set! divisor (* 2 a))
(set! root1 (/ (+ minusb radical) divisor))
(set! root2 (/ (- minusb radical) divisor))
(list root1 root2))))

(quadratic-formula 1 -3 2) ⇒ (2 1)

26

Scheme: Assignments
§ Can be done without set!

(define quadratic-formula
(lambda (a b c)
(let ((minusb (- 0 b))

(radical (sqrt (- (* b b) (* 4 (* a c)))))
(divisor (* 2 a)))

(let ((root1 (/ (+ minusb radical) divisor))
(root2 (/ (- minusb radical) divisor)))

(list root1 root2)))))

(quadratic-formula 1 -3 2) ⇒ (2 1)

27

Scheme: Assignments

§ Cannot be done without set!
§ the following version of cons, cons-new, counts the number

of times it is called in the variable cons-count

(define cons-count 0)
(define cons-new

(let ((old-cons cons))
(lambda (x y)

(set! cons-count (+ cons-count 1))
(old-cons x y))))

(cons-new 'a '(b c))
cons-count ⇒ 1
(cons-new 'a (cons-new 'b (cons-new 'c '())))
cons-count ⇒ 4

28

Scheme: Sequencing

§ (begin exp1 exp2 ...)
§ exp1 exp2 ... are evaluated from left to right
§ used for operations causing side effects
§ returns the result of the last expression

29

Scheme: Sequencing
(define quadratic-form
(lambda (a b c)
(begin
(define root1 0) (define root2 0)
(define minusb 0) (define radical 0) (define

divisor 0) (set! minusb (- 0 b))
(set! radical (sqrt (- (* b b) (* 4 (* a c)))))
(set! divisor (* 2 a))
(set! root1 (/ (+ minusb radical) divisor))
(set! root2 (/ (- minusb radical) divisor))
(list root1 root2))))

(quadratic-form 1 -3 2) ⇒ '(2 1)

30

Scheme: Conditionals

§ (if test consequent alternative)
§ returns the value of consequent or alternative depending

on test
(define abs

(lambda (x)
(if (< x 0)

(- 0 x)
x)))

(abs 4) ⇒ 4
(abs -5) ⇒ 5

31

Scheme: Conditionals

§ (not obj)
§ returns #t if obj is false and #f otherwise

(not #f) ⇒ #t

(not ’a) ⇒ #f

(not 0) ⇒ #f

32

Scheme: Conditionals

§ (and exp …)
§ evaluates its subexpressions from left to right and stops

immediately if any expression evaluates to false
§ returns the value of the last expression evaluated

(and #f 4 6 ’a) ⇒ #f

(and ’(a b) ’a 2) ⇒ 2

(let ((x 5))

(and (> x 2) (< x 4))) ⇒ #f

33

Scheme: Conditionals

§ (or exp …)
§ evaluates its subexpressions from left to right and stops

immediately if any expression evaluates to true
§ returns the value of the last expression evaluated

(or #f 4 6 ’a) ⇒ 4

(or ’(a b) ’a 2) ⇒ (a b)

(let ((x 3))

(or (< x 2) (> x 4))) ⇒ #f

34

Scheme: Conditionals

§ (cond clause1 clause2 …)
§ evaluates the test of each clause until one is found true or

all are evaluated

(define memv
(lambda (x ls)

(cond
((null? ls) #f)
((eqv? (car ls) x) ls)
(else (memv x (cdr ls))))))

(memv 'a '(d a b c)) ⇒ '(a b c)
(memv 'a '(b b c)) ⇒ #f

35

Scheme: Recursion, iteration, mapping

§ (let name ((var val)…) exp1 exp2 ...)
§ this is named let
§ it is equivalent with

((letrec ((name (lambda (var ...) exp1 exp2 ...)))
name)

val ...)

36

Scheme: Recursion, iteration, mapping

(define divisors
(lambda (n)

(let f ((i 2))
(cond

((>= i n) '())
((integer? (/ n i))
(cons i (f (+ i 1))))

(else (f (+ i 1)))))))
(divisors 5) ⇒ '()
(divisors 12) ⇒ '(2 3 4 6)

37

Scheme: Recursion, iteration, mapping

§ (do ((var val update)…) (test res …) exp …)
§ variables var... are are initially bound to val... and

rebound on each iteration to update...
§ stops when test is true and returns the value of the last res
§ when test is false, it evaluates exp..., then update...; new

bindings for var... are created and iteration continues

38

Scheme: Recursion, iteration, mapping

(define factorial

(lambda (n)

(do ((i n (- i 1)) (a 1 (* a i)))

((zero? i) a))))

(factorial 0) ⇒ 1

(factorial 1) ⇒ 1

(factorial 5) ⇒ 120

39

Scheme: Recursion, iteration, mapping

(define fibonacci
(lambda (n)
(if (= n 0) 1
(do ((i n (- i 1))(a1 1 (+ a1 a2))(a2 0 a1))

((= i 0) a1)))))
(fibonacci 0) ⇒ 1
(fibonacci 1) ⇒ 1
(fibonacci 2) ⇒ 2
(fibonacci 3) ⇒ 3
(fibonacci 4) ⇒ 5

40

Scheme: Recursion, iteration, mapping

§ (map procedure list1 list2 ...)
§ applies procedure to corresponding elements of the lists

list1 list2 ... and returns the list of the resulting values
§ procedure must accept as many arguments as there are

lists
§ the order is not specified

(map abs ’(1 -2 3 -4 5 -6)) ⇒ (1 2 3 4 5 6)

(map (lambda (x y) (* x y))

’(1 2 3 4) ’(5 6 7 8)) ⇒ (5 12 21 32)

41

Scheme: Recursion, iteration, mapping

§ (for-each procedure list1 list2 ...)
§ similar to map
§ does not create and return a list
§ applications are from left to right

(let ((same-count 0))
(for-each
(lambda (x y)

(if (= x y)
(set! same-count (+ same-count 1))
'()))

'(1 2 3 4 5 6) '(2 3 3 4 7 6))
same-count) ⇒ 3

42

Scheme: Pairs

§ cons builds a pair (called also dotted pair)
§ both proper and improper lists can be written in dotted notation
§ a list is a chain of pairs ending in the empty list ()

§ proper list: cdr of the last pair is the empty list
§ x is a proper list if there is n such that cdrn(x) = '()

§ improper list: cdr of the last pair is anything other than ()

(cons 'a '(b)) ⇒ '(a b) ; proper
(cons 'a 'b) ⇒ '(a . b) ; improper
(cdr (cdr (cdr '(a b c)))) ⇒ '()
(cdr (cdr '(a b . c))) ⇒ 'c

43

Scheme: Predicates

§ (boolean? obj)
§ #t if obj is either #t or #f; #f otherwise

§ (pair? obj)
§ #t if obj is a pair; #f otherwise

(pair? '(a b)) ⇒ #t
(pair? '(a . b)) ⇒ #t
(pair? 2) ⇒ #f
(pair? 'a) ⇒ #f
(pair? '(a)) ⇒ #t
(pair? '()) ⇒ #f

44

Scheme: Predicates

§ (char? obj) - #t if obj is a character, else #f
§ (string? obj) - #t if obj is a string, else #f
§ (number? obj) - #t if obj is a number, else #f
§ (complex? obj) - #t if obj is complex, else #f
§ (real? obj) - #t if obj is a real number, else #f
§ (integer? obj) - #t if obj is integer, else #f
§ (list? obj) - #t if obj is a list, else #f
§ (vector? obj) - #t if obj is a vector, else #f
§ (symbol? obj) - #t if obj is a symbol, else #f
§ (procedure? obj) - #t if obj is a function, else #f

45

Scheme: Input / Output

§ (read)
§ returns the next object from input

§ (display obj)
§ prints obj

(display "compute the square root of:")

⇒ compute the square root of: 2

(sqrt (read))

⇒ 1.4142135623730951

46

Scheme: Deep binding

(define A
(lambda (i P)
(let ((B (lambda () (display i) (newline))))

(cond ((= i 4) (P))
((= i 3) (A (+ i 1) P))
((= i 2) (A (+ i 1) P))
((= i 1) (A (+ i 1) P))
((= i 0) (A (+ i 1) B))))))

(define C (lambda () 10))
(A 0 C) ⇒ 0

47

Scheme: Deep binding

(define A
(lambda (i P)
(let ((B (lambda () (display i) (newline))))

(cond ((= i 4) (P))
((= i 3) (A (+ i 1) P))
((= i 2) (A (+ i 1) B))
((= i 1) (A (+ i 1) P))
((= i 0) (A (+ i 1) B))))))

(define C (lambda () 10))
(A 0 C) ⇒ 2

48

Scheme: Storage allocation for lists

§ Lists are constructed with list and cons
§ list is a shorthand version of nested cons functions

(list 'apple 'orange 'grape)

⇒ '(apple orange grape)

(cons 'apple (cons 'orange (cons 'grape '())))

⇒ '(apple orange grape)

49

Scheme: Storage allocation for lists

§ Memory allocation with cons
§ cell with pointers to head (car) and tail (cdr):

§ Example
(cons 'this (cons 'is (cons 'a (cons 'list '()))))

head

tail

this is a list

'()

50

Scheme: Storage allocation for lists

(cons 'a '(b c)) ⇒ '(a b c)

(cons '(a b) '(c d)) ⇒ '((a b) c d)

d

'()

c

c

'()

a b

a b

'()

51

Scheme: Equality

§ (eq? obj1 obj2)
§ returns #t if obj1 and obj2 are identical, else #f
§ implementation as fast as possible

§ (eqv? obj1 obj2)
§ returns #t if obj1 and obj2 are equivalent, else #f
§ similar to eq? but is guaranteed to return #t for two

exact numbers, two inexact numbers, or two characters
with the same value

§ (equal? obj1 obj2)
§ returns #t if obj1 and obj2 have the same structure and

contents, else #f

52

Scheme: Equality
(eq? 'a 3) ⇒ #f
(eqv? 'a 3) ⇒ #f
(equal? 'a 3) ⇒ #f

(eq? 'a 'a) ⇒ #t
(eqv? 'a 'a) ⇒ #t
(equal? 'a 'a) ⇒ #t

(eq? #t (null? '())) ⇒ #t
(eqv? #t (null? '())) ⇒ #t
(equal? #t (null? '())) ⇒ #t

(eq? 3.4 (+ 3.0 .4)) ⇒ #f
(eqv? 3.4 (+ 3.0 .4)) ⇒ #t
(equal? 3.4 (+ 3.0 .4)) ⇒ #t

53

Scheme: Equality

(eq? '(a) '(a)) ⇒ #f
(eqv? '(a) '(a)) ⇒ #f
(equal? '(a) '(a)) ⇒ #t

(define x ‘(a list))
(define y (cons (car x) (cdr x)))
(eq? x y) ⇒ #f
(eqv? x y) ⇒ #f
(equal? x y) ⇒ #t

a list

'()

x

y

54

Scheme: List searching

§ (memq obj list)
(memv obj list)
(member obj list)

§ return the first tail of list whose car is equivalent to obj (in
the sense of eq?, eqv?, or equal? resp.) or #f

(memq 'b '(a b c)) ⇒ '(b c)

55

Scheme: List searching

§ (assq obj list)
(assv obj list)
(assoc obj list)

§ an association list (alist) is a proper list whose elements are
key-value pairs (key . value)

§ return the first element of alist whose car is equivalent to
obj (in the sense of eq?, eqv?, or equal? resp.) or #f

(assq 'b '((a . 1) (b . 2))) ⇒ '(b . 2)

(assq 'c '((a . 1) (b . 2))) ⇒ #f

(assq 2/3 '((1/3 . a) (2/3 . b))) ⇒ '(2/3 . b)

(assq 2/3 '((1/3 a) (2/3 b))) ⇒ '(2/3 b)

56

Scheme: Evaluation order

§ λ-calculus:
§ applicative order (parameters evaluated before passed)
§ normal order (parameters passed unevaluated)

§ Scheme uses applicative order
§ applicative may be faster
§ in general, either one can be faster

57

Scheme: Evaluation order

§ Example: applicative order is faster

(double (* 3 4))
⇒ (double 12)
⇒ (+ 12 12)
⇒ 24

(double (* 3 4))
⇒ (+ (* 3 4) (* 3 4)) ⇒ (+ 12 (* 3 4))
⇒ (+ 12 12)
⇒ 24

58

Scheme: Evaluation order

§ Example: normal order is faster

(define switch (lambda (x a b c)
(cond ((< x 0) a)

((= x 0) b)
((> x 0) c))))

(switch -1 (+ 1 2) (+ 2 3) (+ 3 4))
⇒ (switch -1 3 (+ 2 3) (+ 3 4))
⇒ (switch -1 3 5 (+ 3 4))
⇒ (switch -1 3 5 7)
⇒ (cond ((< -1 0) 3)

((= -1 0) 5)
((> -1 0) 7)

⇒ 3

59

Scheme: Evaluation order

§ Example: normal order is faster (cont’d)

(switch -1 (+ 1 2) (+ 2 3) (+ 3 4))
⇒ (cond ((< -1 0) (+ 1 2))

((= -1 0) (+ 2 3))
((> -1 0) (+ 3 4))

⇒ (cond (#t (+ 1 2))
((= -1 0) (+ 2 3))
((> -1 0) (+ 3 4))

⇒ (+ 1 2)
⇒ 3

60

Scheme: Higher-order functions
(define mcompose
(lambda (flist)
(lambda (x)
(if (null? (cdr flist))
((car flist) x)
((car flist) ((mcompose (cdr flist)) x))))))

(define cadr
(mcompose (list car cdr)))

(cadr '(a b c)) ⇒ ‘b

(define cadaddr
(mcompose (list car cdr car cdr cdr)))

(cadaddr '(a b (c d))) ⇒ 'd

61

Scheme: DFA simulation

§ DFA description:
§ start state
§ transitions: list of pairs

§ ((p a) q):

§ final states

(define zero-one-even-dfa

‘(q0 ; start state
(((q0 0) q2) ((q0 1) q1)
((q1 0) q3) ((q1 1) q0)
((q2 0) q0) ((q2 1) q3)
((q3 0) q1) ((q3 1) q2)) ; transition fn

(q0))) ; final states

62

550 Chapter 11 Functional Languages

q0

Start

q1

q2

1

0 0 0 0

1

1

1

q3

(define zero-one-even-dfa
'(q0 ; start state

(((q0 0) q2) ((q0 1) q1) ((q1 0) q3) ((q1 1) q0) ; transition fn
((q2 0) q0) ((q2 1) q3) ((q3 0) q1) ((q3 1) q2))

(q0))) ; final states

Figure 11.2 DFA to accept all strings of zeros and ones containing an even number of each.
At the bottom of the figure is a representation of the machine as a Scheme data structure, using
the conventions of Figure 11.1.

5. Explain the difference between let, let*, and letrec in Scheme.

6. Explain the difference between eq?, eqv?, and equal?.

7. Describe three ways in which Scheme programs can depart from a purely
functional programming model.

8. What is an association list?

9. What does it mean for a language to be homoiconic?

10. What is an S-expression?

11. Outline the behavior of eval and apply.

11.4 A Bit of OCaml

Like Lisp, ML has a complicated family tree. The original language was devised
in the early 1970s by Robin Milner and others at Cambridge University. SML
(“Standard” ML) and OCaml (Objective Caml) are the two most widely used di-
alects today. Haskell, the most widely used language for functional programming
research, is a separate descendant of ML (by way of Miranda). F#, developed by
Microsoft and others, is a descendant of OCaml.

Work on OCaml (and its predecessor, Caml) has been led since the early 1980s
by researchers at INRIA, the French national computing research organization
(the ‘O’ was added to the name with the introduction of object-oriented features

p q
a

Scheme: DFA simulation

§ DFA simulation:

(simulate

zero-one-even-dfa ; machine description

'(0 1 1 0 1)) ; input string

⇒ '(q0 q2 q3 q2 q0 q1 reject)

(simulate

zero-one-even-dfa ; machine description

'(0 1 0 0 1 0)) ; input string

⇒ '(q0 q2 q3 q1 q3 q2 q0 accept)

63

Scheme: Differentiation

§ Symbolic differentiation
𝑑
𝑑𝑥 𝑐 =

𝑑
𝑑𝑥 𝑦 = 0, 𝑐 a constant, 𝑦 ≠ 𝑥

𝑑
𝑑𝑥 𝑥 = 1

𝑑
𝑑𝑥

𝑢 + 𝑣 =
𝑑
𝑑𝑥

𝑢 +
𝑑
𝑑𝑥

𝑣 , 𝑢, 𝑣 functions of 𝑥

𝑑
𝑑𝑥 𝑢 − 𝑣 =

𝑑
𝑑𝑥 𝑢 −

𝑑
𝑑𝑥 𝑣

𝑑
𝑑𝑥 𝑢𝑣 = 𝑢

𝑑
𝑑𝑥 𝑣 + 𝑣

𝑑
𝑑𝑥 𝑢

𝑑
𝑑𝑥

𝑢
𝑣 =

𝑣 𝑑
𝑑𝑥 𝑢 − 𝑢 𝑑

𝑑𝑥 (𝑣)
𝑣2

64

Scheme: Differentiation
(define diff
(lambda (x expr)
(if (not (pair? expr))

(if (equal? x expr) 1 0)
(let ((u (cadr expr))(v (caddr expr)))
(case (car expr)
((+) (list '+ (diff x u) (diff x v)))
((-) (list '- (diff x u) (diff x v)))
((*) (list '+

(list '* u (diff x v))
(list '* v (diff x u))))

((/) (list '/ (list '-
(list '* v (diff x u))
(list '* u (diff x v)))

(list '* v v)))
)))))

65

Scheme: Differentiation
(diff 'x '3) => 0
(diff 'x 'x) => 1
(diff 'x 'y) => 0
(diff 'x '(+ x 2)) => '(+ 1 0)
(diff 'x '(+ x y)) => '(+ 1 0)
(diff 'x '(* 2 x)) => '(+ (* 2 1) (* x 0))
(diff 'x '(/ 1 x)) => '(/ (- (* x 0) (* 1 1)) (* x x))
(diff 'x '(+ (* 2 x) 1)) => '(+ (+ (* 2 1) (* x 0)) 0)
(diff 'x '(/ x (- (* 2 x) (* 1 x))))
=> '(/

(- (* (- (* 2 x) (* 1 x)) 1) (* x (- (+ (* 2 1)
(* x 0)) (+ (* 1 1) (* x 0)))))

(* (- (* 2 x) (* 1 x)) (- (* 2 x) (* 1 x))))

66

11Functional Languages

11.7 Theoretical Foundations

Mathematically, a function is a single-valued mapping: it associates every elementEXAMPLE 11.77
Functions as mappings in one set (the domain) with (at most) one element in another set (the range). In

conventional notation, we indicate the domain and range by writing

sqrt : R −→ R

We can, of course, have functions of more than one variable—that is, functions
whose domains are Cartesian products:

plus : [R ×R] −→ R !

If a function provides a mapping for every element of the domain, the func-
tion is said to be total. Otherwise, it is said to be partial. Our sqrt function is par-
tial: it does not provide a mapping for negative numbers. We could change our
definition to make the domain of the function the non-negative numbers, but
such changes are often inconvenient, or even impossible: inconvenient because
we should like all mathematical functions to operate on R; impossible because
we may not know which elements of the domain have mappings and which do
not. Consider for example the function f that maps every natural number a to
the smallest natural number b such that the digits of the decimal representation
of a appear b digits to the right of the decimal point in the decimal expansion of
π. Clearly f (59) = 4, because π = 3.14159 But what about f (428945028), or
in general f (n) for arbitrary n? Absent results from number theory, it is not at all
clear how to characterize the values at which f is defined. In such a case a partial
function is essential.

It is often useful to characterize functions as sets or, more precisely, as subsetsEXAMPLE 11.78
Functions as sets of the Cartesian product of the domain and the range:

sqrt ⊂ [R×R]

plus ⊂ [R×R×R]

C 212

11.7 Theoretical Foundations C 213

We can specify which subset using traditional set notation:

sqrt ≡
{
(x, y) ∈ R×R | y > 0 ∧ x = y2

}

plus ≡ {(x, y, z) ∈ R×R×R | z = x + y}

Note that this sort of definition tells us what the value of a function like sqrt is,
but it does not tell us how to compute it; more on this distinction below. !

One of the nice things about the set-based characterization is that it makes it
clear that a function is an ordinary mathematical object. We know that a functionEXAMPLE 11.79

Functions as powerset
elements

from A to B is a subset of A× B. This means that it is an element of the powerset
of A× B—the set of all subsets of A× B, denoted 2A×B:

sqrt ∈ 2R×R

Similarly,
plus ∈ 2R×R×R

Note the overloading of notation here. The powerset 2A should not be confused
with exponentiation, though it is true that for a finite set A the number of ele-
ments in the powerset of A is 2n, where n = |A|, the cardinality of A. !

Because functions are single-valued, we know that they constitute only some of
the elements of 2A×B. Specifically, they constitute all and only those sets of pairs
in which the first component of each pair is unique. We call the set of such setsEXAMPLE 11.80

Function spaces the function space of A into B, denoted A → B. Note that (A → B) ⊂ 2A×B. In
our examples:

sqrt ∈ [R→ R]

plus ∈ [(R×R)→ R]

Now that functions are elements of sets, we can easily build higher-order func-EXAMPLE 11.81
Higher-order functions as
sets

tions:

compose ≡ {(f , g, h) | ∀x ∈ R, h(x) = f (g(x))}

What are the domain and range of compose? We know that f , g, and h are ele-
ments of R→ R. Thus

compose ∈ [(R→ R)× (R→ R)]→ (R→ R)

Note the similarity to the notation employed by the ML type system (Sec-
tion 7.2.4). !

Using the notion of “currying” from Section 11.6, we note that there is an
alternative characterization for functions like plus. Rather than a function fromEXAMPLE 11.82

Curried functions as sets pairs of reals to reals, we can capture it as a function from reals to functions from
reals to reals:

curried plus ∈ R→ (R→ R) !

C 214 Chapter 11 Functional Languages

We shall have more to say about currying in Section C 11.7.3.

11.7.1 Lambda Calculus

As we suggested in the main text, one of the limitations of the function-as-set
notation is that it is nonconstructive: it doesn’t tell us how to compute the value of
a function at a given point (i.e., on a given input). Church designed the lambda
calculus to address this limitation. In its pure form, lambda calculus represents
everything as a function. The natural numbers, for example, can be represented
by a distinguished zero function (commonly the identity function) and a suc-
cessor function. (One common formulation uses a select second function that
takes two arguments and returns the second of them. The successor function is
then defined in such a way that the number n ends up being represented by a
function that, when applied to select second n times, returns the identity func-
tion [Mic89, Sec. 3.5]; [Sta95, Sec. 7.6]; see Exercise C 11.23.) While of theoretical
importance, this formulation of arithmetic is highly cumbersome. We will there-
fore take ordinary arithmetic as a given in the remainder of this subsection. (And
of course all practical functional programming languages provide built-in sup-
port for both integer and floating-point arithmetic.)

A lambda expression can be defined recursively as (1) a name; (2) a lambda
abstraction consisting of the letter λ, a name, a dot, and a lambda expression;
(3) a function application consisting of two adjacent lambda expressions; or (4) a
parenthesized lambda expression. To accommodate arithmetic, we will extend
this definition to allow numeric literals.

When two expressions appear adjacent to one another, the first is interpretedEXAMPLE 11.83
Juxtaposition as function
application

as a function to be applied to the second:

sqrt n

Most authors assume that application associates left-to-right (so f A B is inter-
preted as (f A)B, rather than f (A B)), and that application has higher precedence
than abstraction (so λx.A B is interpreted as λx.(A B), rather than (λx.A)B). ML
adopts these rules. !

Parentheses are used as necessary to override default groupings. Specifically, ifEXAMPLE 11.84
Lambda calculus syntax we distinguish between lambda expressions that are used as functions and those

that are used as arguments, then the following unambiguous CFG can be used to
generate lambda expressions with a minimal number of parentheses:

expr −→ name | number | λ name . expr | func arg

func −→ name | (λ name . expr) | func arg

arg −→ name | number | (λ name . expr) | (func arg)

In words: we use parentheses to surround an abstraction that is used as either
a function or an argument, and around an application that is used as an argu-
ment. !

11.7.1 Lambda Calculus C 215

The letter λ introduces the lambda calculus equivalent of a formal parameter.EXAMPLE 11.85
Binding parameters with λ The following lambda expression denotes a function that returns the square of its

argument:

λx.times x x

The name (variable) introduced by a λ is said to be bound within the expression
following the dot. In programming language terms, this expression is the vari-
able’s scope. A variable that is not bound is said to be free. !

As in a lexically scoped programming language, a free variable needs to be
defined in some surrounding scope. Consider, for example, the expressionEXAMPLE 11.86

Free variables λx.λy.times x y. In the inner expression (λy.times x y), y is bound but x is free.
There are no restrictions on the use of a bound variable: it can play the role of a
function, an argument, or both. Higher-order functions are therefore completely
natural. !

If we wish to refer to them later, we can give expressions names:EXAMPLE 11.87
Naming functions for
future reference square ≡ λx.times x x

identity ≡ λx.x

const7 ≡ λx.7

hypot ≡ λx.λy.sqrt (plus (square x) (square y))

Here ≡ is a metasymbol meaning, roughly, “is an abbreviation for.” !
To compute with the lambda calculus, we need rules to evaluate expressions.EXAMPLE 11.88

Evaluation rules It turns out that three rules suffice:

beta reduction: For any lambda abstraction λx.E and any expression M, we say

(λx.E) M →β E[M\x]

where E[M\x] denotes the expression E with all free occurrences of x replaced
by M. Beta reduction is not permitted if any free variables in M would become
bound in E[M\x].

alpha conversion: For any lambda abstraction λx.E and any variable y that has no
free occurrences in E, we say

λx.E→α λy.E[y\x]

eta reduction: A rule to eliminate “surplus” lambda abstractions. For any lambda
abstraction λx.E, where E is of the form F x, and x has no free occurrences in
F, we say

λx.F x→η F !

C 216 Chapter 11 Functional Languages

To accommodate arithmetic we will also allow an expression of the form op xEXAMPLE 11.89
Delta reduction for
arithmetic

y , where x and y are numeric literals and op is one of a small set of standard
functions, to be replaced by its arithmetic value. This replacement is called delta
reduction. In our examples we will need only the functions plus, minus, and
times:

plus 2 3 →δ 5

minus 5 2 →δ 3

times 2 3 →δ 6 !

Beta reduction resembles the use of call by name parameters (Section 9.3.1).
Unlike Algol 60, however, the lambda calculus provides no way for an argument
to carry its referencing environment with it; hence the requirement that an argu-
ment not move a variable into a scope in which its name has a different meaning.
Alpha conversion serves to change names to make beta reduction possible. Eta
reduction is comparatively less important. If square is defined as above, eta re-EXAMPLE 11.90

Eta reduction duction allows us to say that

λx.square x→η square

In English, square is a function that squares its argument; λx.square x is a func-
tion of x that squares x. The latter reminds us explicitly that it’s a function (i.e.,
that it takes an argument), but the former is a little less messy looking. !

Through repeated application of beta reduction and alpha conversion (and
possibly eta reduction), we can attempt to reduce a lambda expression to its sim-
plest possible form—a form in which no further beta reductions are possible. AnEXAMPLE 11.91

Reduction to simplest form example can be found in Figure C 11.5. In line (2) of this derivation we have to
employ an alpha conversion because the argument that we need to substitute for
g contains a free variable (h) that is bound within g’s scope. If we were to make
the substitution of line (3) without first having renamed the bound h (as k), then
the free h would have been captured, erroneously changing the meaning of the
expression.

In line (5) of the derivation, we had a choice as to which subexpression to re-
duce. At that point the expression as a whole consisted of a function application
in which the argument was itself a function application. We chose to substitute
the main argument ((λx.x x) (λx.x x)), unevaluated, into the body of the main
lambda abstraction. This choice is known as normal-order reduction, and corre-
sponds to normal-order evaluation of arguments in programming languages, as
discussed in Sections 6.6.2 and 11.5. In general, whenever more than one beta
reduction could be made, normal order chooses the one whose λ is left-most in
the overall expression. This strategy substitutes arguments into functions before
reducing them. The principal alternative, applicative-order reduction, reduces
both the function part and the argument part of every function application to the
simplest possible form before substituting the latter into the former. !

11.7.2 Control Flow C 217

(λf .λg.λh.fg(h h))(λx.λy.x)h(λx.x x)

→β (λg.λh.(λx.λy.x)g(h h))h(λx.x x) (1)

→α (λg.λk.(λx.λy.x)g(k k))h(λx.x x) (2)

→β (λk.(λx.λy.x)h(k k))(λx.x x) (3)

→β (λx.λy.x)h((λx.x x) (λx.x x)) (4)

→β (λy.h)((λx.x x) (λx.x x)) (5)

→β h (6)

Figure 11.5 Reduction of a lambda expression. The top line consists of a function applied to
three arguments. The first argument (underlined) is the “select first” function, which takes two
arguments and returns the first. The second argument is the symbol h, which must be either a
constant or a variable bound in some enclosing scope (not shown). The third argument is an
“apply to self ” function that takes one argument and applies it to itself. The particular series
of reductions shown occurs in normal order. It terminates with a simplest (normal) form of
simply h.

Church and Rosser showed in 1936 that simplest forms are unique: any se-
ries of reductions that terminates in a nonreducible expression will produce the
same result. Not all reductions terminate, however. In particular, there are ex-
pressions for which no series of reductions will terminate, and there are others
in which normal-order reduction will terminate but applicative-order reduction
will not. The example expression of Figure C 11.5 leads to an infinite “compu-EXAMPLE 11.92

Nonterminating
applicative-order reduction

tation” under applicative-order reduction. To see this, consider the expression
at line (5). This line consists of the constant function (λy.h) applied to the argu-
ment (λx.x x) (λx.x x). If we attempt to evaluate the argument before substituting
it into the function, we run through the following steps:

(λx.x x) (λx.x x)

→β (λx.x x) (λx.x x)

→β (λx.x x) (λx.x x)

→β (λx.x x) (λx.x x)

. . . !

In addition to showing the uniqueness of simplest (normal) forms, Church and
Rosser showed that if any evaluation order will terminate, normal order will. This
pair of results is known as the Church-Rosser theorem.

11.7.2 Control Flow

We noted at the beginning of the previous subsection that arithmetic can be
modeled in the lambda calculus using a distinguished zero function (commonly

C 218 Chapter 11 Functional Languages

the identity) and a successor function. What about control-flow constructs—
selection and recursion in particular?

The select first function, λx.λy.x, is commonly used to represent the BooleanEXAMPLE 11.93
Booleans and conditionals value true. The select second function, λx.λy.y, is commonly used to represent

the Boolean value false. Let us denote these by T and F. The nice thing about
these definitions is that they allow us to define an if function very easily:

if ≡ λc.λt.λe.c t e

Consider:

if T 3 4 ≡ (λc.λt.λe.c t e) (λx.λy.x) 3 4

→∗
β (λx.λy.x) 3 4

→∗
β 3

if F 3 4 ≡ (λc.λt.λe.c t e) (λx.λy.y) 3 4

→∗
β (λx.λy.y) 3 4

→∗
β 4 !

Functions like equal and greater than can be defined to take numeric values as
arguments, returning T or F.

Recursion is a little tricky. An equation likeEXAMPLE 11.94
Beta abstraction for
recursion gcd ≡ λa.λb.(if (equal a b) a

(if (greater than a b) (gcd (minus a b) b) (gcd (Minus b a) a)))

is not really a definition at all, because gcd appears on both sides. Our previous
definitions (T, F, if) were simply shorthand: we could substitute them out to
obtain a pure lambda expression. If we try that with gcd, the “definition” just
gets bigger, with new occurrences of the gcd name. To obtain a real definition, we
first rewrite our equation using beta abstraction (the opposite of beta reduction):

gcd ≡ (λg.λa.λb.(if (equal a b) a

(if (greater than a b) (g(minus a b) b) (g(minus b a) a)))) gcd

Now our equation has the form

gcd ≡ f gcd

where f is the perfectly well-defined (nonrecursive) lambda expression

λg.λa.λb.(if (equal a b) a

(if (greater than a b) (g (minus a b) b) (g (minus b a) a)))

Clearly gcd is a fixed point of f . !

11.7.3 Structures C 219

As it turns out, for any function f given by a lambda expression, we can findEXAMPLE 11.95
The fixed-point
combinator Y

the least fixed point of f , if there is one, by applying the fixed-point combinator

λh.(λx.h(xx)) (λx.h(xx))

commonly denoted Y. Y has the property that for any lambda expression f , if the
normal-order evaluation of Yf terminates, then f (Yf) and Yf will reduce to the
same simplest form (see Exercise C 11.21). In the case of our gcd function, we
have

gcd ≡ (λh.(λx.h(x x)) (λx.h(x x)))

(λg.λa.λb.(if (equal a b) a

(if (greater than a b) (g(minus a b) b) (g(minus b a) a))))

Figure C 11.6 traces the evaluation of gcd 4 2. Given the existence of the Y
combinator, most authors permit recursive “definitions” of functions, for conve-
nience. !

11.7.3 Structures

Just as we can use functions to build numbers and truth values, we can also use
them to encapsulate values in structures. Using Scheme terminology for the sakeEXAMPLE 11.96

Lambda calculus list
operators

of clarity, we can define simple list-processing functions as follows:

cons ≡ λa.λd.λx.x a d

car ≡ λl.l select first

cdr ≡ λl.l select second

nil ≡ λx.T

null? ≡ λl.l(λx.λy.F)

where select first and select second are the functions λx.λy.x and λx.λy.y,
respectively—functions we also use to represent true and false. !

Using these definitions we can see thatEXAMPLE 11.97
List operator identities

car(cons A B) ≡ (λl.l select first) (cons A B)

→β (cons A B) select first

≡ ((λa.λd.λx.x a d)A B) select first

→∗
β (λx.x A B) select first

→β select first A B

≡ (λx.λy.x) A B

→∗
β A

C 220 Chapter 11 Functional Languages

gcd 2 4 ≡ Yf 2 4

≡ ((λh.(λx.h(x x)) (λx.h(x x)))f) 2 4

→β ((λx.f (x x)) (λx.f (x x))) 2 4

≡ (k k) 2 4, where k ≡ λx.f (x x)

→β (f (k k)) 2 4

≡ ((λg.λa.λb.(if (= a b) a (if (> a b) (g(− a b) b) (g(− b a) a)))) (k k)) 2 4

→β (λa.λb.(if (= a b) a (if (> a b) ((k k)(− a b) b) ((k k)(− b a) a)))) 2 4

→∗
β if (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

≡ (λc.λt.λe.c t e) (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

→∗
β (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

→δ F 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

≡ (λx.λy.y) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

→∗
β if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2)

→ . . .

→ (k k) (− 4 2) 2

≡ ((λx.f (x x))k) (− 4 2) 2

→β (f (k k)) (− 4 2) 2

≡ ((λg.λa.λb.(if (= a b) a (if (> a b) (g(− a b) b) (g(− b a) a)))) (k k)) (− 4 2) 2

→β (λa.λb.(if (= a b) a (if (> a b) ((k k)(− a b) b) ((k k)(− b a) a)))) (− 4 2) 2

→∗
β if (= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

≡ (λc.λt.λe.c t e)

(= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→∗
β (= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→δ (= 2 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→δ T (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

≡ (λx.λy.x) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→∗
β (− 4 2)

→δ 2

Figure 11.6 Evaluation of a recursive lambda expression. As explained in the body of the text, gcd is defined to be the
fixed-point combinator Y applied to a beta abstraction f of the standard recursive definition for greatest common divisor.
Specifically, Y is λh.(λx.h(x x)) (λx.h(x x)) and f is λg.λa.λb.(if (= a b) a (if (> a b) (g(− a b) b) (g(− b a) a))). For brevity we
have used =, >, and − in place of equal , greater than, and minus . We have performed the evaluation in normal order.

11.7.3 Structures C 221

cdr(cons A B) ≡ (λl.l select second) (cons A B)

→β (cons A B) select second

≡ ((λa.λd.λx.x a d)A B) select second

→∗
β (λx.x A B) select second

→β select second A B

≡ (λx.λy.y) A B

→∗
β B

null? nil ≡ (λl.l (λx.λy.select second)) nil

→β nil (λx.λy.select second)

≡ (λx.select first) (λx.λy.select second)

→β select first

≡ T

null? (cons A B) ≡ (λl.l (λx.λy.select second)) (cons A B)

→β (cons A B) (λx.λy.select second)

≡ ((λa.λd.λx.x a d)A B) (λx.λy.select second)

→∗
β (λx.x A B) (λx.λy.select second)

→β (λx.λy.select second)A B

→∗
β select second

≡ F !

Because every lambda abstraction has a single argument, lambda expressions
are naturally curried. We generally obtain the effect of a multiargument functionEXAMPLE 11.98

Nesting of lambda
expressions

by nesting lambda abstractions:

compose ≡ λf .λg.λx.f (g x)

which groups as

λf .(λg.(λx.(f (g x))))

We commonly think of compose as a function that takes two functions as argu-
ments and returns a third function as its result. We could just as easily, however,
think of compose as a function of three arguments: the f , g, and x above. The
official story, or course, is that compose is a function of one argument that eval-
uates to a function of one argument that in turn evaluates to a function of one
argument. !

If desired, we can use our structure-building functions to define a noncurriedEXAMPLE 11.99
Paired arguments and
currying

version of compose whose (single) argument is a pair:

C 222 Chapter 11 Functional Languages

paired compose ≡ λp.λx.(car p) ((cdr p) x)

If we consider the pairing of arguments as a general technique, we can write a
curry function that reproduces the single-argument version, just as we did in
Scheme in Section 11.6:

curry ≡ λf .λa.λb.f (cons a b) !

3CHECK YOUR UNDERSTANDING

29. What is the difference between partial and total functions? Why is the differ-
ence important?

30. What is meant by the function space A→ B?

31. Define beta reduction, alpha conversion, eta reduction, and delta reduction.

32. How does beta reduction in lambda calculus differ from lazy evaluation of
arguments in a nonstrict programming language like Haskell?

33. Explain how lambda expressions can be used to represent Boolean values and
control flow.

34. What is beta abstraction?

35. What is the Y combinator? What useful property does it possess?

36. Explain how lambda expressions can be used to represent structured values
such as lists.

37. State the Church-Rosser theorem.

High. fg(22))(xxy.x) 9(dre.use) -eative
C 129))(x)h(Xx.xx)If. y. Ah. Fg-
-

->* (x)(f)(Xa.e A(g)))(ne
C=>Ag.x.(Xx.xy.x)y(x))(xx.xx) Es (g.1.g)k(Xr.se
-

E(.(Xx.xy.)h(ix) (exe) =>(g.xx.g)f(n.)
(.y.se)((weese)(Arse) -(4.2)(a)
-(Xy.2)(sall E h

&

(a)(r.za) (Xw. (or
-(,.zx)()

(y-y)z(XX.(12.)h)
- z(aw.)

=z(xw(1)2)
=z(xw.v)

Predicate Calculus

Chapter 12, Section 3

Predicate calculus

§ Predicate: function that maps constants and variables to
true and false

§ First order predicate calculus: notation and inference
rules for constructing and reasoning about propositions:

§ Operators:
§ and ⋀
§ or ⋁
§ not ¬
§ implication →
§ equivalence ⟷

§ Quantifiers:
§ existential ∃
§ universal ∀

2

Predicate calculus

§ Examples

∀C(rainy(C) ⋀ cold(C) → snowy(C))

∀A,∀B(takes(A, C) ⋀ takes(B, C) → classmates(A, B))

§ Fermat’s last Theorem:
∀N ((N > 2) → ¬(∃A ∃B ∃C(AN + BN = CN)))

§ ∀, ∃ bind variables like λ in λ-calculus

3

Predicate calculus

§ Normal form
§ the same thing can be written in different ways:

(P → Q) ≡ (¬P ∨ Q)

¬∃X (P(X)) ≡ ∀X (¬P(X))

¬(P ∧ Q) ≡ (¬P ∨ ¬Q)

§ This is good for humans, bad for machines
§ Automatic theorem proving requires a normal form

4

Clausal Form

§ Clausal form
§ Example:

∀X (¬student(X) → (¬resident(X) ∧ ¬∃Y (takes(X, Y) ∧
class(Y))))

§ 1. eliminate → and ↔:

∀X (student(X) ∨ (¬resident(X) ∧ ¬∃Y (takes(X, Y) ∧
class(Y))))

5

Clausal Form

∀X (student(X) ∨ (¬resident(X) ∧ ¬∃Y (takes(X, Y) ∧
class(Y))))

§ 2. move ¬ inward (using De Morgan’s laws):

∀X (student(X) ∨ (¬resident(X) ∧ ∀Y (¬(takes(X, Y) ∧
class(Y)))))
≡
∀X (student(X) ∨ (¬resident(X) ∧ ∀Y (¬takes(X, Y) ∨
¬class(Y))))

6

Clausal Form

∀X (student(X) ∨ (¬resident(X) ∧ ∀Y (¬takes(X, Y) ∨
¬class(Y))))
§ 3. eliminate existential quantifiers

§ Skolemization (not necessary in our example)
§ 4. pull universal quantifiers to the outside of the proposition

(some renaming might be needed)

∀X ∀Y (student(X) ∨ (¬resident(X) ∧ (¬takes(X, Y) ∨
¬class(Y))))

§ convention: rules are universally quantified
§ we drop the implicit ∀’s:

student(X) ∨ (¬resident(X) ∧ (¬takes(X, Y) ∨
¬class(Y)))

7

Clausal Form

student(X) ∨ (¬resident(X) ∧ (¬takes(X, Y) ∨
¬class(Y)))

§ 5. convert the proposition in conjunctive normal form (CNF)
§ conjunction of disjunctions

(student(X) ∨ ¬resident(X)) ∧
(student(X) ∨ ¬takes(X, Y) ∨ ¬class(Y))

8

Clausal Form

(student(X) ∨ ¬resident(X)) ∧
(student(X) ∨ ¬takes(X, Y) ∨ ¬class(Y))

§ We can rewrite as:
(resident(X) → student(X)) ∧
((takes(X, Y) ∧ class(Y)) → student(X))
≡
(student(X) ← resident(X)) ∧
(student(X) ← (takes(X, Y) ∧ class(Y)))

9

Clausal Form

§ We obtained:
(student(X) ← resident(X)) ∧
(student(X) ← (takes(X, Y) ∧ class(Y)))

§ which translates directly to Prolog:

student(X) :- resident(X).
student(X) :- takes(X, Y), class(Y).

:- means “if”
, means “and”

10

Horn Clauses

§ Horn clauses
§ particular case of clauses: only one non-negated term:

¬Q1 ∨ ¬Q2 ∨...∨ ¬Qk ∨ P ≡
Q1 ∧ Q2 ∧...∧ Qk → P ≡
P ← Q1 ∧ Q2 ∧...∧ Qk

§ which is a rule in Prolog:

P :- Q1, Q2,...,Qk.

§ for k = 0 we have a fact:

P.

11

Automated proving

§ Rule: both sides of :-
P :- Q1, Q2,...,Qk. means P ← Q1 ∧ Q2 ∧...∧ Qk

§ Fact: left-hand side of (implicit) :-
P. means P ← true

§ Query: right-hand side of (implicit) :-
?- Q1, Q2,...,Qk.

§ Automated proving: given a collection of axioms (facts and
rules), add the negation of the theorem (query) we want to
prove and attempt (using resolution) to obtain a contradiction
§ Query negation: ¬(Q1 ∧ Q2 ∧...∧ Qk)

12

Automated proving

§ Example
student(john).

?- student(john).
true.

§ Fact: student(john) ← true
§ Query (negated):

¬student(john) ≡ false ← student(john)
§ We obtain a contradiction (that proves the query):
false ← student(john) ← true

§ The above contradiction is obvious; in general, use resolution.
13

Resolution

§ Resolution (propositional logic):
§ From hypotheses:
(A1 ∨ A2 ∨...∨ Ak ∨ C) ∧ (B1 ∨ B2 ∨...∨ Bl ∨ ¬C)
§ We can obtain the conclusion:
A1 ∨ A2 ∨...∨ Ak ∨ B1 ∨ B2 ∨...∨ Bl

§ Example: modus ponens
p → q ∧ p gives q (because p → q is ¬p ∨ q)

§ In predicate logic:
§ C and ¬C’: where C, C’ may not be identical but can be

unified: that means, they can be made identical by
substituting variables (details later)

14

Resolution example
student(X) :- resident(X).
student(X) :- takes(X, Y), class(Y).
resident(john).
takes(mark, 3342).
class(3342).

?- student(john).
true

§ Resolution (add negation of query):
(¬resident(X) ∨ student(X)) ∧
(¬takes(Y, Z) ∨ ¬class(Z) ∨ student(Y)) ∧
resident(john) ∧
takes(mark, 3342) ∧
class(3342) ∧
¬student(john) 15

Resolution example

(¬resident(X) ∨ student(X)) ∧
(¬takes(Y, Z) ∨ ¬class(Z) ∨ student(Y)) ∧
resident(john) ∧
takes(mark, 3342) ∧
class(3342) ∧
¬student(john)

§ student(X) and student(john) unify for X = john

(¬resident(john) ∨ student(john)) ∧
(¬takes(Y, Z) ∨ ¬class(Z) ∨ student(Y)) ∧
resident(john) ∧
takes(mark, 3342) ∧
class(3342) ∧
¬student(john)

16

Resolution example

(¬resident(john) ∨ student(john)) ∧
(¬takes(Y, Z) ∨ ¬class(Z) ∨ student(Y)) ∧
resident(john) ∧
takes(mark, 3342) ∧
class(3342) ∧
¬student(john)

§ resolution gives:

¬resident(john) ∧
(¬takes(Y, Z) ∨ ¬class(Z) ∨ student(Y)) ∧
resident(john) ∧
takes(mark, 3342) ∧
class(3342)

17

Resolution example

¬resident(john) ∧
(¬takes(Y, Z) ∨ ¬class(Z) ∨ student(Y)) ∧
resident(john) ∧
takes(mark, 3342) ∧
class(3342)

§ Resolution gives:
(◻) ∧
(¬takes(Y, Z) ∨ ¬class(Z) ∨ student(Y)) ∧
takes(mark, 3342) ∧
class(3342)

§ The empty clause (◻) is not satisfiable
§ We obtained a contradiction showing that student(john) is

provable from the given axioms
18

Resolution example
?- student(matthew).
false.

§ Resolution:
(¬resident(X) ∨ student(X)) ∧
(¬takes(Y, Z) ∨ ¬class(Z) ∨ student(Y)) ∧
resident(john) ∧
takes(mark, 3342) ∧
class(3342) ∧
¬student(matthew)

¬resident(matthew) ∧
(¬takes(Y, Z) ∨ ¬class(Z) ∨ student(Y)) ∧
resident(john) ∧
takes(mark, 3342) ∧
class(3342)

19

Resolution example

¬resident(matthew) ∧
(¬takes(Y, 3342) ∨ student(Y)) ∧
resident(john) ∧
takes(mark, 3342)

¬resident(matthew) ∧
student(mark) ∧
resident(john)

§ cannot obtain a contradiction
§ student(matthew) is not provable from the given axioms

20

Skolemization

§ So far we did not worry about existential quantifiers
§ What if we have:

∃X (takes(X, 3342) ∧ year(X, 2))

§ To get rid of the ∃, we introduce a constant, a, (as a notation
for the one which is assumed to exists by ∃)

takes(a, 3342) ∧ year(a, 2)

21

Skolemization

§ What if we do this inside the scope of a universal quantifier ∀:

∀X (¬resident(X) ∨ ∃Y (address(X, Y)))

§ We get rid again of ∃ by choosing an address which depends on
X, say ad(X):

∀X (¬resident(X) ∨ (address(X, ad(X))))

22

Skolemization

§ In Prolog
takes(a, 3342).
year(a, 2).
address(X, ad(X)) :- resident(X).
class_with_2nd(C) :- takes(X, C), year(X, 2).
has_address(X) :- address(X, Y).
resident(b).

?- class_with_2nd(C).
C = 3342
?- has_address(X).

X = b

23

Skolemization

?- takes(X, 3342).

X = a

§ We cannot identify a 2nd-year student in 3342 by name

?- address(b, X).

X = ad(b).

§ We cannot find out the address of b

24

Horn Clauses Limitations

§ Horn clauses: only one non-negated term (head):

¬Q1 ∨ ¬Q2 ∨...∨ ¬Qk ∨ P ≡ P ← Q1 ∧ Q2 ∧...∧ Qk

P :- Q1, Q2,...,Qk.

§ If we have more than one non-negated term (two heads):

¬Q1 ∨ ¬Q2 ∨...∨ ¬Qk ∨ P1 ∨ P2 ≡ P1 ∨ P2 ← Q1 ∧ Q2 ∧...∧ Qk

§ then we have a disjunction in the left-hand side of ← (:-)
P1 or P2 :- Q1, Q2,...,Qk.

§ which is not allowed in Prolog

25

Horn Clauses Limitations

§ If we have less than one (zero) non-negated terms:

¬Q1 ∨ ¬Q2 ∨...∨ ¬Qk

≡
false ← Q1 ∧ Q2 ∧...∧ Qk

§ the closest we have is:
:- Q1, Q2,...,Qk.

§ which Prolog allows a query, not a rule

26

Horn Clauses Limitations

§ Example: two heads
“every living thing is an animal or a plant”

§ Clausal form:
animal(X) ∨ plant(X) ← living(X) ≡
animal(X) ∨ plant(X) ∨ ¬living(X)

§ In Prolog, the closest we can do is:

animal(X) :- living(X), not(plant(X)).
plant(X) :- living(X), not(animal(X)).

§ which is not the same, because, as we’ll see later, not
indicates Prolog’s inability to prove, not falsity

27

Logic
Programming

Chapter 12

Logic Programming

Prolog says:

?- 1+1 = 2.
false.

so ... keep reading!

2

Logic Programming

§ Algorithm = axioms + control
§ Axioms

§ facts and rules
§ supplied by the programmer

§ Control
§ computation is deduction
§ supplied by the language

§ Given a set of axioms, the user states a theorem, or goal, and
the language attempts to show that the axioms imply the goal

3

Logic Programming

§ Axioms = Horn clauses
Q1 ∧ Q2 ∧...∧ Qk → P

or
P ← Q1 ∧ Q2 ∧...∧ Qk

§ P is the head
§ Q1 ∧ Q2 ∧...∧ Qk is the body

§ k ≥ 1: rule: if Q1 and Q2 and ... and Qk, then P
§ k = 0: fact: P (also: if true, then P)

§ The meaning is that if all Qi’s are true, then we can deduce P

4

Prolog

§ Imperative language:
§ runs in the context of a referencing environment, where various

constants and functions have been defined
§ Prolog

§ runs in the context of a database where various clauses have
been defined

§ Clause composed of terms:
§ constants:

§ atoms: id that starts with lower case: foo, a , john
§ numbers: 0, 2022

§ variables: id that starts with upper case: Foo, X
§ structures: functor (atom) and argument list (terms)

§ student(john), takes(X, cs3342)
§ arguments can be constants, variables, (nested) structures

5

Prolog

§ structures are interpreted as logical predicates
§ predicate: functor + list of arguments
§ Syntax:

term → atom | number | variable | struct
terms → term | term , terms
struct → atom (terms)
fact → term.
rule → term :- terms.
query → ?- terms.

6

Prolog

§ Rule:
P ← Q1 ∧ Q2 ∧...∧ Qk

§ in Prolog:
P :- Q1, Q2,...,Qk.

§ Fact (rule without right-hand side):
P (P ← true)

§ in Prolog:
P.

7

:- = ←
, = ∧

Prolog

§ Query (rule without left-hand side)
Q1 ∧ Q2 ∧...∧ Qk

§ in Prolog:
?- Q1, Q2,...,Qk.

§ the negated query is also:
false ← Q1 ∧ Q2 ∧...∧ Qk

8

Prolog

§ Rules are implicitly universally quantified (∀)
§ Example:

path(L, M) :- link(L, X), path(X, M).

§ means:

∀L,∀M,∀X (path(L, M) if (link(L, X) and path(X, M)))
or

∀L,∀M (path(L, M) if (∃X (link(L, X) and path(X, M))))

9

Prolog

§ Queries are implicitly existentially quantified (∃)
§ Example:

?- path(algol60, X), path(X, c).

§ means
∃X (path(algol60, X) and path(X, c))

10

Prolog

§ Setting up working directory
§ Checking working directory:
?- working_directory(X, X).
X = (//).

§ Changing working directory:
?- working_directory(_,’/Users/Lucian/Documents/
4_myCourses/2021-2022/CS3342b_win2022/my_programs/Prolog’).

true.

?- working_directory(X, X).

X = (_,’/Users/Lucian/Documents/4_myCourses/2021-2022/
CS3342b_win2022/my_programs/Prolog’).

11

Prolog

§ Facts and rules from a file:

§ reading the file “my_file.pl”
§ must be in the working directory

?- consult(my_file).

true.

12

Prolog

§ Example:
rainy(seattle).
rainy(rochester).

?- rainy(C).
C = seattle

§ Type ENTER if done
§ Type ‘;’ if you want more solutions

C = seattle ;
C = rochester.

13

Prolog

§ Example:
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X).

?- snowy(C).
C = rochester.

§ only one solution

14

Prolog

§ Example:

link(fortran, algol60).
link(algol60, cpl).
link(cpl, bcpl).
link(bcpl, c).
link(c, cplusplus).
link(algol60, simula67).
link(simula67, cplusplus).
link(simula67, smalltalk80).

path(L, L).
path(L, M) :- link(L, X), path(X, M).

15

Prolog

§ Example:

?- link(simula67, X).
X = cplusplus ;
X = smalltalk80.

?- link(algol60, X), link(X, Y).
X = cpl,
Y = bcpl ;
X = simula67,
Y = cplusplus ;
X = simula67,
Y = smalltalk80.

16

Prolog

§ Example:

?- path(fortran, cplusplus).
true ;
true ;
false.

?- path(X, cpl).
X = cpl ;
X = fortran ;
X = algol60 ;
false.

17

Prolog

§ Example:

?- path(X,Y).
X = Y ;
X = fortran,
Y = algol60 ;
X = fortran,
Y = cpl ;
X = fortran,
Y = bcpl ;
X = fortran,
Y = c ;
X = fortran,
Y = cplusplus ; % ... it finds all paths

18

Lists

§ [a, b, c] – list
§ [] – empty list
§ can use a cons-like predicate:

‘[|]’(a, ‘[|]’(b, ‘[|]’(c, [])))

means [a, b, c]

§ Head | Tail notation: [H|T]
§ [a, b, c] can be written as:

[a | [b, c]]
[a, b | [c]]
[a, b, c | []]

19

Lists
?- [H|T] = [a, b, c].
H = a,
T = [b, c].

?- [H|T] = [[], c | [[a], b, [] | [b]]].
H = [],
T = [c, [a], b, [], b].

?- [H|[X|T]] = [[], c | [[a], b, [] | [b]]].
H = [],
X = c,
T = [[a], b, [], b].

?- [H1,H2|[X|T]] = [[],c | [[a], b, [] | [b]]].
H1 = [],
H2 = c,
X = [a],
T = [b, [], b].

20

List operations

§ Searching an element in a list:

member(X, [X|_]).
member(X, [_|T]) :- member(X, T).

§ _ is a placeholder for a variable not needed anywhere else

21

List operations

§ Searching an element in a list:

?- member(a, [b, a, c]).
true

?- member(a, [b, d, c]).
false.

?- member(a, X).
X = [a|_14708] ;
X = [_14706, a|_14714] ;
X = [_14706, _14712, a|_14720] ;
X = [_14706, _14712, _14718, a|_14726] ;
X = [_14706, _14712, _14718, _14724, a|_14732]
...

22

List operations
§ Adding an element to a list:
add(X, L, [X|L]).
?- add(a, [b,c], L).
L = [a, b, c].

§ Deleting an element from a list:
del(X, [X|T], T).
del(X, [Y|T], [Y|T1]) :- del(X, T, T1).

?- del(a, [a, b, c, a, b, a, d, a], X).
X = [b, c, a, b, a, d, a] ;
X = [a, b, c, b, a, d, a] ;
X = [a, b, c, a, b, d, a] ;
X = [a, b, c, a, b, a, d] ;
false.

23

List operations

§ Appending two lists:

append([], Y, Y).

append([H|X], Y, [H|Z]) :- append(X, Y, Z).

§ Sublists:

sublist(S,L) :- append(_,L1,L), append(S,_,L1).

24

List operations

§ Example:

?- append([a, b, c], [d, e], L).
L = [a, b, c, d, e].

?- append(X, [d, e], [a, b, c, d, e]).
X = [a, b, c]

?- append([a, b, c], Y, [a, b, c, d, e]).
Y = [d, e].

§ Very different from imperative programming: input/output
§ In Prolog: no clear notion of input and output

§ Just search for values that make the goal true
25

List operations

§ Subset
subset([], S).
subset([H|T], S) :- member(H, S), subset(T, S).

§ Reversing a list
reverse([], []).
reverse([H|T],R) :- reverse(T,R1), append(R1,[H],R).

§ Permutations
permute([], []).

permute([H|T], P) :- permute(T, P1), insert(H, P1, P).

26

Unification

path(L, L).
path(L, M) :- link(L, X), path(X, M).

?- path(fortran, cplusplus).

§ Unification is a type of pattern matching:
L unifies with fortran
M unifies with cplusplus

27

Unification

§ Unification rules:
§ a constant unifies with itself
§ two structures unify if and only if:

§ have the same functor
§ have the same arity
§ corresponding arguments unify recursively

§ a variable unifies with anything
§ if the other thing has a value, then the variable is

instantiated
§ if the other thing is an uninstantiated variable, then the

two variables are associated so that if either is given a
value later, that value will be shared by both

28

Unification

§ Equality (=) is unifiability:
§ The goal =(A,B) succeeds iff A and B can be unified
§ A = B – syntactic sugar

§ Example:
?- a = a.

true.

?- a = b.

false.
?- foo(a,b) = foo(a,b).

true.

29

Unification

§ Example:
?- X = a.

X = a.

?- foo(a,b) = foo(X,b).
X = a.

30

Arithmetic

§ arithmetic operators – predicates
§ +(2,3) - syntactic sugar 2+3

§ +(2,3) is a two-argument structure; does not unify with 5
?- 1+1 = 2.

false.

§ is: predicate that unifies first arg. with value of second arg.
?- is(X, 1+1).

X = 2.

?- X is 1+1.

X = 2.

31

More unification

§ Substitution:
§ a function from variables to terms
§ Example: σ = {X → [a,b], Y → [a,b,c]}

§ Tσ – the result of applying the substitution σ to the term T
§ Xσ = U if X → U is in σ, X otherwise
§ (f(T1, T2,…,Tn))σ = f(T1σ, T2σ,…,Tnσ)

§ Example:
σ = {X → [a,b], Y → [a,b,c]}
Yσ = [a,b,c]
Zσ = Z
append([], Y, Y)σ = append([], [a,b,c],[a,b,c])

32

More unification

§ A term U is an instance of T if U=Tσ, for some substit. σ
§ Two terms T1 and T2 unify if T1σ and T2σ are identical, for

some σ; σ is called a unifier of T1 and T2

§ σ is the most general unifier of T1 and T2 if, for any other
unifier δ, Tiδ is an instance of Tiσ

§ Example: L = [a,b | X]
§ Unifiers:

§ σ1 = {L → [a,b | X1], X → X1}
§ σ2 = {L → [a,b,c | X2], X → [c | X2]}
§ σ3 = {L → [a,b,c,d | X3], X → [c, d | X3]}

§ σ1 is the most general unifier

33

Control Algorithm

§ Control algorithm
§ the way Prolog tries to satisfy a query

§ Two decisions:
§ goal order: choose the leftmost subgoal
§ rule order: use the first applicable rule

34

Control Algorithm

§ Control algorithm

start with a query as the current goal
while (the current goal is nonempty) do

choose the leftmost subgoal
if (a rule applies to this subgoal) then

select the first applicable rule not already used
form a new current goal

else
if (at the root) then
false

else
backtrack

true
35

Control Algorithm - Example

36

rainy(C).

C = seattle
; (backtrack)

C → seattle
rainy(seattle).

rainy(seattle).
rainy(rochester).

?- rainy(C).
C = seattle ;
C = rochester.

C = rochester.

C → rochester
rainy(rochester).

Prolog search tree:

Control Algorithm - Example

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X).

?- snowy(C).
C = rochester.

37

Control Algorithm - Example

38

snowy(C).

rainy(C), cold(C).

X → C
snowy(X) :- rainy(X), cold(X).

cold(seattle).

backtrack

cold(rochester).

C = rochester

C → seattle
rainy(seattle).

C → rochester
rainy(rochester).

Prolog search tree:

Control Algorithm – details

start with a query as the current goal: G1, G2, …, Gk (k ≥ 0)
while (k > 0) do // the current goal is nonempty

choose the leftmost subgoal G1
if (a rule applies to G1) then

select first applicable rule (not tried): A :- B1,…, Bj (j ≥ 0)
let σ be the most general unifier of G1 and A
the current goal becomes: B1σ,…, Bjσ, G2σ, …, Gkσ

else
if (at the root) then

false // tried all possibilities
else

backtrack // try something else
true // all goals have been satisfied

39

Control Algorithm - Example

append([], Y, Y).
append([H|X], Y, [H|Z]) :- append(X, Y, Z).

prefix(P, L) :- append(P, _, L).
suffix(S, L) :- append(_, S, L).

?- suffix([a], L), prefix(L, [a, b, c]).
L = [a] // that’s the obvious solution

L = [a] ; // if we ask for more solutions
// we get an infinite computation

// eventually aborting (out of stack)

40

Control Algorithm - Example
?- suffix([a], L), prefix(L, [a, b, c]).

L = [a] ; // infinite computation
§ why the infinite computation?
§ consider the first subgoal only:

?- suffix([a], L).
L = [a] ;
L = [_944, a] ;
L = [_944, _956, a] ;
L = [_944, _956, _968, a] ; ...

§ infinitely many solutions, none (but the first) satisfying
the second subgoal

§ control checks an infinite subtree with no solutions
41

Control Algorithm - Example

append([], Y, Y).
append([H|X], Y, [H|Z]) :- append(X, Y, Z).

prefix(P, L) :- append(P, _, L).
suffix(S, L) :- append(_, S, L).

?- suffix([b], L), prefix(L, [a, b, c]).
L = [a, b] // that’s the obvious solution

L = [a, b] ;// if we ask for more solutions
// again, infinite computation

42

Goal order

§ Changing the order of subgoals can change solutions:

?- suffix([a], L), prefix(L, [a, b, c]).
L = [a] ;
// infinite computation

§ if we change the goal order, then no infinite computation:

?- prefix(L, [a, b, c]), suffix([a], L).
L = [a] ;
false.

43

Goal order

§ The explanation is that the first subgoal now has finitely
many solutions:

?- prefix(L, [a, b, c]).
L = [] ;
L = [a] ;
L = [a, b] ;
L = [a, b, c] ;
false.

44

Rule order

§ Changing the order of rules can change solutions:

append([], Y, Y).
append([H|X], Y, [H|Z]) :- append(X, Y, Z).

?- append(X, [c], Z).
X = [],
Z = [c] ;
X = [_576],
Z = [_576, c] ;
X = [_576, _588],
Z = [_576, _588, c] ;
X = [_576, _588, _600],
Z = [_576, _588, _600, c] ; ...

45

Rule order

§ Changing the order of rules can change solutions:

append([H|X], Y, [H|Z]) :- append(X, Y, Z).
append([], Y, Y).

?- append(X, [c], Z).
// infinite computation

46

Cuts

§ ! – cut
§ zero-argument predicate
§ prevents backtracking, making computation more efficient
§ can also implement a form of negation (we’ll see later)
§ General form of a cut:

P :- Q1, Q2,..., Qj-1, !, Qj+1,...,Qk.

§ Meaning: the control backtracks past
Qj-1, Qj-2,…, Q1, P

without considering any remaining rules for them

47

Cuts

§ Example:

member(X, [X|_]).
member(X, [_|T]) :- member(X, T).

prime_candidate(X) :- member(X,Candidates),prime(X).

§ assume prime(a) is expensive to compute
§ if a is a member of Candidates many times, this is slow
§ solution:

member1(X, [X|_]) :- !.
member1(X, [_|T]) :- member1(X, T).

48

Cuts

?- member(a, [a,b,c,a,d,a]).
true ;
true ;
true ;
false.

?- member1(a, [a,b,c,a,d,a]).
true.

49

Negation as failure

§ not – negation
§ Definition:

not(X) :- X, !, fail.
not(_).

§ fail always fails
§ the first rule attempts to satisfy X
§ if X succeeds, then ! succeeds as well, then fail fails and
! will prevent backtracking

§ if X fails, then not(X) fails and, because the cut has not
been reached, not(_) is tried and immediately succeeds

50

Negation as failure
§ Example:

?- X=2, not(X=1).

X = 2.

?- not(X=1), X=2.

false.

51

12Logic Languages

12.3 Theoretical Foundations

In mathematical logic, a predicate is a function that maps constants (atoms) or
variables to the values true and false. Predicate calculus provides a notation and
inference rules for constructing and reasoning about propositions (statements)
composed of predicate applications, operators, and the quantifiers ∀ and ∃.1 Op-
erators include and (∧), or (∨), not (¬), implication (→), and equivalence (↔).
Quantifiers are used to introduce bound variables in an appended proposition,
much as λ introduces variables in the lambda calculus. The universal quantifier,
∀, indicates that the proposition is true for all values of the variable. The existen-
tial quantifier, ∃, indicates that the proposition is true for at least one value of the
variable. Here are a few examples:EXAMPLE 12.39

Propositions
∀C[rainy(C) ∧ cold(C)→ snowy(C)]

(For all cities C, if C is rainy and C is cold, then C is snowy.)

∀A,∀B[(∃C[takes(A,C) ∧ takes(B,C)])→ classmates(A,B)]

(For all students A and B, if there exists a class C such that A takes C and B takes
C, then A and B are classmates.)

∀N[(N > 2)→ ¬(∃A,∃B, ∃C[AN + BN = CN])]

(This is Fermat’s last theorem.) !
One of the interesting characteristics of predicate calculus is that there areEXAMPLE 12.40

Different ways to say things many ways to say the same thing. For example,

1 Strictly speaking, what we are describing here is the first-order predicate calculus. There exist
higher-order calculi in which predicates can be applied to predicates, not just to atoms and vari-
ables. Prolog allows the user to construct higher-order predicates using call; the formalization
of such predicates is beyond the scope of this book.

C 226

12.3.1 Clausal Form C 227

(P1 → P2) ≡ (¬P1 ∨ P2)

(¬∃X[P(X)]) ≡ (∀X[¬P(X)])

¬(P1 ∧ P2) ≡ (¬P1 ∨ ¬P2)

This flexibility of expression tends to be handy for human beings, but it can
be a nuisance for automatic theorem proving. Propositions are much easier to
manipulate algorithmically if they are placed in some sort of normal form. One
popular candidate is known as clausal form. We consider this form in the follow-
ing section. !

12.3.1 Clausal Form

As it turns out, clausal form is very closely related to the structure of Prolog pro-
grams: once we have a proposition in clausal form, it will be relatively easy to
translate it into Prolog. We should note at the outset, however, that the translation
is not perfect: there are aspects of predicate calculus that Prolog cannot capture,
and there are aspects of Prolog (e.g., its imperative and database-manipulating
features) that have no analogues in predicate calculus.

Clocksin and Mellish [CM03, Chap. 10] describe a five-step procedure (based
heavily on an article by Martin Davis [Dav63]) to translate an arbitrary first-order
predicate proposition into clausal form. We trace that procedure here.

In the first step, we eliminate implication and equivalence operators. As a con-EXAMPLE 12.41
Conversion to clausal form crete example, the proposition

∀A[¬student(A)→ (¬dorm resident(A) ∧ ¬∃B[takes(A,B) ∧ class(B)])]

would become

∀A[student(A) ∨ (¬dorm resident(A) ∧ ¬∃B[takes(A,B) ∧ class(B)])]

In the second step, we move negation inward so that the only negated items
are individual terms (predicates applied to arguments):

∀A[student(A) ∨ (¬dorm resident(A) ∧ ∀B[¬(takes(A,B) ∧ class(B))])]

≡ ∀A[student(A) ∨ (¬dorm resident(A) ∧ ∀B[¬takes(A, B) ∨ ¬class(B)])]

In the third step, we use a technique known as Skolemization (due to logician
Thoralf Skolem) to eliminate existential quantifiers. We will consider this tech-
nique further in Section C 12.3.3. Our example has no existential quantifiers at
this stage, so we proceed.

In the fourth step, we move all universal quantifiers to the outside of the propo-
sition (in the absence of naming conflicts, this does not change the proposition’s

C 228 Chapter 12 Logic Languages

meaning). We then adopt the convention that all variables are universally quan-
tified, and drop the explicit quantifiers:

student(A) ∨ (¬dorm resident(A) ∧ (¬takes(A,B) ∨ ¬class(B)))

Finally, in the fifth step, we use the distributive, associative, and commutative
rules of Boolean algebra to convert the proposition to conjunctive normal form, in
which the operators ∧ and ∨ are nested no more than two levels deep, with ∧ on
the outside and ∨ on the inside:

(student(A) ∨ ¬dorm resident(A)) ∧ (student(A) ∨ ¬takes(A, B) ∨ ¬class(B))

Our proposition is now in clausal form. Specifically, it is in conjunctive nor-
mal form, with negation only of individual terms, with no existential quantifiers,
and with implied universal quantifiers for all variables (i.e., for all names that are
neither constants nor predicates). The clauses are the items at the outer level: the
things that are and-ed together. !

To translate the proposition to Prolog, we convert each logical clause to a Pro-EXAMPLE 12.42
Conversion to Prolog log fact or rule. Within each clause, we use commutativity to move the negated

terms to the right and the non-negated terms to the left (our example is already
in this form). We then note that we can recast the disjunctions as implications:

(student(A)← ¬(¬dorm resident(A)))

∧ (student(A)← ¬(¬takes(A,B) ∨ ¬class(B)))

≡ (student(A)← dorm resident(A))

∧ (student(A)← (takes(A,B) ∧ class(B)))

These are Horn clauses. The translation to Prolog is trivial:

student(A) :- dorm_resident(A).
student(A) :- takes(A, B), class(B). !

12.3.2 Limitations

We claimed at the beginning of Section 12.1 that Horn clauses could be used
to capture most, though not all, of first-order predicate calculus. So what is it
missing? What can go wrong in the translation? The answer has to do with the
number of non-negated terms in each clause. If a clause has more than one, then if
we attempt to cast it as an implication there will be a disjunction on the left-hand
side of the← symbol, something that isn’t allowed in a Horn clause. Similarly, if
we end up with no non-negated terms, then the result is a headless Horn clause,
something that Prolog allows only as a query, not as an element of the database.

As an example of a disjunctive head, consider the statement “every living thingEXAMPLE 12.43
Disjunctive left-hand side is an animal or a plant.” In clausal form, we can capture this as

12.3.2 Limitations C 229

animal(X) ∨ plant(X) ∨ ¬living(X)

or equivalently
animal(X) ∨ plant(X)← living(X)

Because we are restricted to a single term on the left-hand side of a rule, the closest
we can come to this in Prolog is

animal(X) :- living(X), \+(plant(X)).
plant(X) :- living(X), \+(animal(X)).

But this is not the same, because Prolog’s \+ indicates inability to prove, not false-
hood. !

As an example of an empty head, consider Fermat’s last theorem (Exam-EXAMPLE 12.44
Empty left-hand side ple C 12.39). Abstracting out the math, we might write

∀N[big(N)→ ¬(∃A,∃B,∃C[works(A,B,C,N)])]

which becomes the following in clausal form:

¬big(N) ∨ ¬works(A,B,C,N)

We can couch this as a Prolog query:

?- big(N), works(A, B, C, N).

(a query that will never terminate), but we cannot express it as a fact or a rule. !
The careful reader may have noticed that facts are entered on the left-hand sideEXAMPLE 12.45

Theorem proving as a
search for contradiction

of an (implied) Prolog :- sign:

rainy(rochester).

while queries are entered on the right:

?- rainy(rochester).

The former means
rainy(rochester)← true

The latter means
false ← rainy(rochester)

If we apply resolution to these two propositions, we end up with the contradiction

false ← true

C 230 Chapter 12 Logic Languages

This observation suggests a mechanism for automated theorem proving: if we are
given a collection of axioms and we want to prove a theorem, we temporarily add
the negation of the theorem to the database and then attempt, through a series of
resolution operations, to obtain a contradiction. !

12.3.3 Skolemization

In Example C 12.41 we were able to translate a proposition from predicate cal-
culus into clausal form without worrying about existential quantifiers. But whatEXAMPLE 12.46

Skolem constants about a statement like this one:

∃X[takes(X, cs254) ∧ class year(X, 2)]

(There is at least one sophomore in cs254.) To get rid of the existential quantifier,
we can introduce a Skolem constant x:

takes(x, cs254), class year(x, 2)

The mathematical justification for this change is based on something called the
axiom of choice; intuitively, we say that if there exists an X that makes the state-
ment true, then we can simply pick one, name it x, and proceed. (If there does not
exist an X that makes the statement true, then we can choose some arbitrary x,
and the statement will still be false.) It is worth noting that Skolem constants are
not necessarily distinct; it is quite possible, for example, for x to name the same
student as some other constant y that represents a sophomore in his201. !

Sometimes we can replace an existentially quantified variable with an arbitrary
constant x. Often, however, we are constrained by some surrounding universal
quantifier. Consider the following example:EXAMPLE 12.47

Skolem functions
∀X[¬dorm resident(X) ∨ ∃A[campus address of(X,A)]]

(Every dorm resident has a campus address.) To get rid of the existential quan-
tifier, we must choose an address for X. Since we don’t know who X is (this is
a general statement about all dorm residents), we must choose an address that
depends on X:

∀X[¬dorm resident(X) ∨ campus address of(X, f(X))]

Here f is a Skolem function. If we used a simple Skolem constant instead, we’d be
saying that there exists some single address shared by all dorm residents. !

Whether Skolemization results in a clausal form that we can translate into Pro-
log depends on whether we need to know what the constant is. If we are usingEXAMPLE 12.48

Limitations of
Skolemization

predicates takes and class_year, and we wish to assert as a fact that there is a
sophomore in cs254, we can write

12.3.3 Skolemization C 231

takes(the_distinguished_sophomore_in_254, cs254).
class_year(the_distinguished_sophomore_in_254, 2).

Similarly, we can assert that every dorm resident has a campus address by writing

campus_address_of(X, the_dorm_address_of(X)) :- dorm_resident(X).

Now we can search for classes with sophomores in them:

sophomore_class(C) :- takes(X, C), class_year(X, 2).
?- sophomore_class(C).
C = cs254

and we can search for people with campus addresses:

has_campus_address(X) :- campus_address_of(X, Y).
dorm_resident(li_ying).
?- has_campus_address(X).
X = li_ying

Unfortunately, we won’t be able to identify a sophomore in cs254 by name, nor
will we be able to identify the address of li_ying. !

3CHECK YOUR UNDERSTANDING

15. Define the notion of clausal form in predicate calculus.

16. Outline the procedure to convert an arbitrary predicate calculus statement
into clausal form.

17. Characterize the statements in clausal form that cannot be captured in Prolog.

18. What is Skolemization? Explain the difference between Skolem constants and
Skolem functions.

19. Under what circumstances may Skolemization fail to produce a clausal form
that can be captured usefully in Prolog?

e

3
④(S =(a]

append(-1,(),prefixese infinitesubtreewithfirstputation:
prefix/(a), (a,3,c)). dcazi? (w,,12.3)
③Is

append (a), -2,(,5,1)). prefix ([W1,a], (a,b,c).②1- ⑧ ayc,ufpla,
append (C, -2,43,c3). appand([H,a), -3,(a,b,c)).

-2 -x
(3,]8) ⑧ H-a

->[b, iii"Ea] · append (x2), -3, (3,23).
③I

⑳track H -ch

append (11,,2),
-4, (,ch).
Stra

&) n,+b

-4,xDi

!

↳
④ I

append (-2, (a), 2).
①-E(->[]

/ appand(X, (a),z).

-
(2,a]⑧ ziypend(x,

(), z)

2-3,2]t

e

④15 -(3] 3.

append)-b, (B), L), prefix), (a,, ch).
=6- [HIX]

-X43-23

prefix (133,59,3,3). Append (X,33,z),prefix(212], (a,b,c)
① X -> [H,1X,y

-953

X->[] ②
z - [H, 12i]% , /-2-93]

append (133, -2,[9,3,33). prefix ([4,33, (a,b,c).
appond (X,(B),z)x

[H,H,12),

90⑪

I ③Is n⑲trac
append (H,3), -3,99,b,c). prefix ([H, H,33, (a,3,c).

yx -32- (3.)I

append (133, -2,93,c3). append (1,41,33, -4,99,9,1)).

⑦/ Ne
3 x- 23 ②/Isa

⑦) +
1a xx3] ⑧

Aye-32 - [c]
I -end (9,,b), -4,93,]). infinitetheap

2)+1+3 no solutionsapperdinesehe
appond (132,

-4,x)). -omton
k,b) I

traciz

2.

2.

③ I - 3

speak,aseyes- b
-besay append(X, -3,25,c)), suffix (a), (alxi).
suffix (1), (2). ② H-bz-x)

x-- (3/X,]xye④I -
1-x[5,]

append(X,-b,x3), suffix
(s), 19,31X,.

X,-
append [2,cas,32). suffix (sai,sab). /~-1 -[]

1 ④ I suffix((a), (9,33). append(x2,-1,(7),suffix(ai,[9,5,cx)
tracin ④ %I

-
2endtecen append(-4,993, (a,3]). Suffix (9ab, 59,b,c).

&(H-a,z
+933

- 4 - (al-5] ④
IErabl ·rdt,

(asi
append (-5,3,33). append)-7,x3,99,b,c3).

2) +-q,z
+93,

②! I
-7 - (al-8]

append)-6, 9ai, 22). append (-8,90),95,33).

⑯tracin 2) H-3,ze9]
- 8 -- 431-9]

append (-9,993,923).
2 H-, z

-[]I
1
-9 - (1-10]

append (-10,x3,si)).
②! +,z

-93

-10 - (1-11

append(-1, sa3, 93).
I
track

I

3
③ I

-

ponds). FalseI
② Ha, z -[3,)bussel(scalxs

#9]. append(X1, -b,[5,c).

-

10s,x,- 93/X2]
- append(X2, -b,993).

xz-]
⑪ ② H-,z []

-Xxaalxab-
1- ()

(4,33 ⑧ append(X,-b,93)

9) x3-43
-

1 - 97

3,8

I

Essiz
-

- append(X,3,71].

2xsize
append(X2,1, E2.
①EE?) /⑳

↑

Xz->[]

zz-x]
⑱⑧.

X =[- b, -2][[infinitelysez =[- 4, - 2,23 8

1.

2.

X ->[-bIX,]
Y-[] /-= - (-

61z]
E I

end(X,,. -- "solutions" are on

append(X2, [1,z).
- this side of thetreeL

2

amy
Butare never reached

⑪

- 2

(infioptiona

2

xade i

Ane member (a, [5,2,9,d,a]).

&xxaT-[,a,d,a]
member(a,(c,a,d,a]). xay②/X- a

IT-(a,d,c

member/a, 99, d,a]). ⑨ (orofinvestigatei
x-ya-(d,a) e

member (a, 5d,a]).
⑨ 8 X-

a

T-[23

member(a,(a)).
⑪ X->G

x=at-> 9]
member(a,9).

e ⑭rac

I

2.

x=2
not (2 =1).

⑪·a -I

t2=1, !, fail. A
X=1, !, fail,X=2.ah

I /daittig
extrac x=4

⑪fail,Xah.
I
fail,X =2.
I
Stren

	Supplementary TOC
	Chapter 02
	Chapter 03
	Chapter 04
	Chapter 06
	Chapter 07
	Chapter 08
	Chapter 09
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Supplementary TOC
	Chapter 02
	Chapter 03
	Chapter 04
	Chapter 06
	Chapter 07
	Chapter 08
	Chapter 09
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

